This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submrc.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| submrc.g | ⊢ 𝐺 = ( mrCls ‘ ( 𝐶 ∩ 𝒫 𝐷 ) ) | ||
| Assertion | submrc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrc.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | submrc.g | ⊢ 𝐺 = ( mrCls ‘ ( 𝐶 ∩ 𝒫 𝐷 ) ) | |
| 3 | submre | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ) |
| 5 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 6 | simp3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ 𝐷 ) | |
| 7 | mress | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ⊆ 𝑋 ) | |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝐷 ⊆ 𝑋 ) |
| 9 | 6 8 | sstrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ 𝑋 ) |
| 10 | 5 1 9 | mrcssidd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 11 | 1 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 12 | 5 9 11 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
| 13 | 1 | mrcsscl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐷 ∧ 𝐷 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 15 | fvex | ⊢ ( 𝐹 ‘ 𝑈 ) ∈ V | |
| 16 | 15 | elpw | ⊢ ( ( 𝐹 ‘ 𝑈 ) ∈ 𝒫 𝐷 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝐷 ) |
| 17 | 14 16 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝒫 𝐷 ) |
| 18 | 12 17 | elind | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 19 | 2 | mrcsscl | ⊢ ( ( ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) → ( 𝐺 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 20 | 4 10 18 19 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑈 ) ) |
| 21 | 4 2 6 | mrcssidd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → 𝑈 ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 22 | 2 | mrccl | ⊢ ( ( ( 𝐶 ∩ 𝒫 𝐷 ) ∈ ( Moore ‘ 𝐷 ) ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 23 | 4 6 22 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ ( 𝐶 ∩ 𝒫 𝐷 ) ) |
| 24 | 23 | elin1d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) ∈ 𝐶 ) |
| 25 | 1 | mrcsscl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ ( 𝐺 ‘ 𝑈 ) ∧ ( 𝐺 ‘ 𝑈 ) ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 26 | 5 21 24 25 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐺 ‘ 𝑈 ) ) |
| 27 | 20 26 | eqssd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷 ) → ( 𝐺 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑈 ) ) |