This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subsubrg2 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | 1 | subsubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ) ) |
| 3 | elin | ⊢ ( 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ) | |
| 4 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ) |
| 6 | 3 5 | bitr2i | ⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ↔ 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) |
| 7 | 2 6 | bitrdi | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRing ‘ 𝑆 ) ↔ 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) ) |
| 8 | 7 | eqrdv | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) |