This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmoim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) | |
| 2 | imdistan | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 4 | 1 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 5 | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
| 9 | 4 8 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |