This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lifting of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| ressascl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑆 ) | ||
| Assertion | ressascl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | ressascl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑆 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 4 | 2 3 | resssca | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | 2 6 | ressvsca | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 8 | eqidd | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑥 = 𝑥 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 10 | 2 9 | subrg1 | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑋 ) ) |
| 11 | 7 8 10 | oveq123d | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
| 12 | 5 11 | mpteq12dv | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 14 | 1 3 13 6 9 | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 15 | eqid | ⊢ ( algSc ‘ 𝑋 ) = ( algSc ‘ 𝑋 ) | |
| 16 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 17 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) | |
| 18 | eqid | ⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝑋 ) = ( 1r ‘ 𝑋 ) | |
| 20 | 15 16 17 18 19 | asclfval | ⊢ ( algSc ‘ 𝑋 ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
| 21 | 12 14 20 | 3eqtr4g | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) ) |