This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars.EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval2.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| aspval2.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | ||
| aspval2.r | ⊢ 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) ) | ||
| aspval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | aspval2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval2.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| 2 | aspval2.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
| 3 | aspval2.r | ⊢ 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) ) | |
| 4 | aspval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 5 | elin | ⊢ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ) |
| 7 | anass | ⊢ ( ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) |
| 9 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 10 | 2 9 | issubassa2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐶 ⊆ 𝑥 ) ) |
| 11 | 10 | anbi1d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ) ) |
| 12 | unss | ⊢ ( ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) |
| 14 | 13 | pm5.32da | ⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
| 15 | 8 14 | bitrid | ⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
| 16 | 15 | abbidv | ⊢ ( 𝑊 ∈ AssAlg → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
| 18 | df-rab | ⊢ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } | |
| 19 | df-rab | ⊢ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } | |
| 20 | 17 18 19 | 3eqtr4g | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 21 | 20 | inteqd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 22 | 1 4 9 | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 23 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 24 | 4 | subrgmre | ⊢ ( 𝑊 ∈ Ring → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
| 25 | 23 24 | syl | ⊢ ( 𝑊 ∈ AssAlg → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
| 26 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 27 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 28 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 29 | 2 26 23 27 28 4 | asclf | ⊢ ( 𝑊 ∈ AssAlg → 𝐶 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝑉 ) |
| 30 | 29 | frnd | ⊢ ( 𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ran 𝐶 ⊆ 𝑉 ) |
| 32 | simpr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 33 | 31 32 | unssd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) |
| 34 | 3 | mrcval | ⊢ ( ( ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 35 | 25 33 34 | syl2an2r | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
| 36 | 21 22 35 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) ) |