This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 2 | rhmghm | ⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 3 | ghmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 7 | 5 6 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 8 | 5 6 | rhmmhm | ⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 9 | mhmeql | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 11 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → 𝑆 ∈ Ring ) |
| 13 | 5 | issubrg3 | ⊢ ( 𝑆 ∈ Ring → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 15 | 4 10 14 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ) |