This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgmre.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | subrgmre | ⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( Moore ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmre.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 1 | subrgss | ⊢ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ⊆ 𝐵 ) |
| 3 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵 ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 5 | 4 | a1i | ⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 ) ) |
| 6 | 5 | ssrdv | ⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ⊆ 𝒫 𝐵 ) |
| 7 | 1 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 | subrgint | ⊢ ( ( 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 | 6 7 9 | ismred | ⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( Moore ‘ 𝐵 ) ) |