This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplasclf.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplasclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplasclf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mplasclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| mplasclf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplasclf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mplasclf | ⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplasclf.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplasclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplasclf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mplasclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 5 | mplasclf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplasclf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 8 | 1 | mplring | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
| 9 | 1 | mpllmod | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
| 10 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 11 | 4 7 8 9 10 2 | asclf | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
| 13 | 1 5 6 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 15 | 3 14 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 16 | 15 | feq2d | ⊢ ( 𝜑 → ( 𝐴 : 𝐾 ⟶ 𝐵 ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) ) |
| 17 | 12 16 | mpbird | ⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |