This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for restriction over union. Theorem 31 of Suppes p. 65. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resundi | ⊢ ( 𝐴 ↾ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∪ ( 𝐴 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir | ⊢ ( ( 𝐵 ∪ 𝐶 ) × V ) = ( ( 𝐵 × V ) ∪ ( 𝐶 × V ) ) | |
| 2 | 1 | ineq2i | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∪ 𝐶 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∪ ( 𝐶 × V ) ) ) |
| 3 | indi | ⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∪ ( 𝐶 × V ) ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∪ ( 𝐴 ∩ ( 𝐶 × V ) ) ) | |
| 4 | 2 3 | eqtri | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∪ 𝐶 ) × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∪ ( 𝐴 ∩ ( 𝐶 × V ) ) ) |
| 5 | df-res | ⊢ ( 𝐴 ↾ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐴 ∩ ( ( 𝐵 ∪ 𝐶 ) × V ) ) | |
| 6 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 7 | df-res | ⊢ ( 𝐴 ↾ 𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) ) | |
| 8 | 6 7 | uneq12i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∪ ( 𝐴 ↾ 𝐶 ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∪ ( 𝐴 ∩ ( 𝐶 × V ) ) ) |
| 9 | 4 5 8 | 3eqtr4i | ⊢ ( 𝐴 ↾ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∪ ( 𝐴 ↾ 𝐶 ) ) |