This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of an imaginary number maps any interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | ||
| efif1olem4.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| efif1olem4.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) | ||
| efif1olem4.5 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) | ||
| efif1olem4.6 | ⊢ 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | ||
| Assertion | efif1olem4 | ⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| 2 | efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| 3 | efif1olem4.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 4 | efif1olem4.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) | |
| 5 | efif1olem4.5 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) | |
| 6 | efif1olem4.6 | ⊢ 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 7 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → 𝑤 ∈ ℝ ) |
| 8 | ax-icn | ⊢ i ∈ ℂ | |
| 9 | recn | ⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) | |
| 10 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( i · 𝑤 ) ∈ ℂ ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝑤 ∈ ℝ → ( i · 𝑤 ) ∈ ℂ ) |
| 12 | efcl | ⊢ ( ( i · 𝑤 ) ∈ ℂ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) |
| 14 | absefi | ⊢ ( 𝑤 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) | |
| 15 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 16 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 17 | 15 16 | ax-mp | ⊢ abs Fn ℂ |
| 18 | fniniseg | ⊢ ( abs Fn ℂ → ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) |
| 20 | 13 14 19 | sylanbrc | ⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 21 | 20 2 | eleqtrrdi | ⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
| 22 | 7 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
| 23 | 22 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐶 ) |
| 24 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐷 ⊆ ℝ ) |
| 25 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝐷 ) | |
| 26 | 24 25 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 28 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝐷 ) | |
| 29 | 24 28 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 30 | 29 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 31 | 27 30 | subcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
| 32 | 2re | ⊢ 2 ∈ ℝ | |
| 33 | pire | ⊢ π ∈ ℝ | |
| 34 | 32 33 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 35 | 34 | recni | ⊢ ( 2 · π ) ∈ ℂ |
| 36 | 2pos | ⊢ 0 < 2 | |
| 37 | pipos | ⊢ 0 < π | |
| 38 | 32 33 36 37 | mulgt0ii | ⊢ 0 < ( 2 · π ) |
| 39 | 34 38 | gt0ne0ii | ⊢ ( 2 · π ) ≠ 0 |
| 40 | divcl | ⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) | |
| 41 | 35 39 40 | mp3an23 | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
| 42 | 31 41 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
| 43 | absdiv | ⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) | |
| 44 | 35 39 43 | mp3an23 | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
| 45 | 31 44 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
| 46 | 0re | ⊢ 0 ∈ ℝ | |
| 47 | 46 34 38 | ltleii | ⊢ 0 ≤ ( 2 · π ) |
| 48 | absid | ⊢ ( ( ( 2 · π ) ∈ ℝ ∧ 0 ≤ ( 2 · π ) ) → ( abs ‘ ( 2 · π ) ) = ( 2 · π ) ) | |
| 49 | 34 47 48 | mp2an | ⊢ ( abs ‘ ( 2 · π ) ) = ( 2 · π ) |
| 50 | 49 | oveq2i | ⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) |
| 51 | 45 50 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) ) |
| 52 | 4 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 53 | 35 | mulridi | ⊢ ( ( 2 · π ) · 1 ) = ( 2 · π ) |
| 54 | 52 53 | breqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) |
| 55 | 31 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
| 56 | 1re | ⊢ 1 ∈ ℝ | |
| 57 | 34 38 | pm3.2i | ⊢ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) |
| 58 | ltdivmul | ⊢ ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) | |
| 59 | 56 57 58 | mp3an23 | ⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
| 60 | 55 59 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
| 61 | 54 60 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ) |
| 62 | 51 61 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ) |
| 63 | 35 39 | pm3.2i | ⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
| 64 | ine0 | ⊢ i ≠ 0 | |
| 65 | 8 64 | pm3.2i | ⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
| 66 | divcan5 | ⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) | |
| 67 | 63 65 66 | mp3an23 | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
| 68 | 31 67 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
| 69 | 8 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → i ∈ ℂ ) |
| 70 | 69 27 30 | subdid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) = ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) |
| 71 | 70 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) ) |
| 72 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 73 | 8 27 72 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑥 ) ∈ ℂ ) |
| 74 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) | |
| 75 | 8 30 74 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑦 ) ∈ ℂ ) |
| 76 | efsub | ⊢ ( ( ( i · 𝑥 ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) | |
| 77 | 73 75 76 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 78 | efcl | ⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) | |
| 79 | 75 78 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 80 | efne0 | ⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) | |
| 81 | 75 80 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) |
| 82 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 83 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( i · 𝑤 ) = ( i · 𝑥 ) ) | |
| 84 | 83 | fveq2d | ⊢ ( 𝑤 = 𝑥 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 85 | fvex | ⊢ ( exp ‘ ( i · 𝑥 ) ) ∈ V | |
| 86 | 84 1 85 | fvmpt | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 87 | 25 86 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
| 88 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) | |
| 89 | 88 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 90 | fvex | ⊢ ( exp ‘ ( i · 𝑦 ) ) ∈ V | |
| 91 | 89 1 90 | fvmpt | ⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 92 | 28 91 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 93 | 82 87 92 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 94 | 79 81 93 | diveq1bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
| 95 | 71 77 94 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ) |
| 96 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 𝑥 − 𝑦 ) ∈ ℂ ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) | |
| 97 | 8 31 96 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) |
| 98 | efeq1 | ⊢ ( ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) | |
| 99 | 97 98 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 100 | 95 99 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) |
| 101 | 68 100 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 102 | nn0abscl | ⊢ ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) | |
| 103 | 101 102 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) |
| 104 | nn0lt10b | ⊢ ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) | |
| 105 | 103 104 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) |
| 106 | 62 105 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) |
| 107 | 42 106 | abs00d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ) |
| 108 | diveq0 | ⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) | |
| 109 | 35 39 108 | mp3an23 | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 110 | 31 109 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 111 | 107 110 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) = 0 ) |
| 112 | 27 30 111 | subeq0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 113 | 112 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 114 | 113 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 115 | dff13 | ⊢ ( 𝐹 : 𝐷 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 116 | 23 114 115 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1→ 𝐶 ) |
| 117 | oveq1 | ⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( 𝑧 − 𝑦 ) = ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) | |
| 118 | 117 | oveq1d | ⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 119 | 118 | eleq1d | ⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 120 | 119 | rexbidv | ⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 121 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 123 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 124 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 125 | iccssre | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) | |
| 126 | 123 124 125 | mp2an | ⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
| 127 | 1 2 | efif1olem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |
| 128 | resinf1o | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) | |
| 129 | f1oeq1 | ⊢ ( 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) ) | |
| 130 | 6 129 | ax-mp | ⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
| 131 | 128 130 | mpbir | ⊢ 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
| 132 | f1ocnv | ⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 133 | f1of | ⊢ ( ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 134 | 131 132 133 | mp2b | ⊢ ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 135 | 134 | ffvelcdmi | ⊢ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 136 | 127 135 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 137 | 126 136 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 138 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) | |
| 139 | 32 137 138 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 140 | 120 122 139 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 141 | oveq1 | ⊢ ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ) | |
| 142 | 8 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → i ∈ ℂ ) |
| 143 | 139 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 144 | 143 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 145 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐷 ⊆ ℝ ) |
| 146 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 147 | 145 146 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℝ ) |
| 148 | 147 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
| 149 | 142 144 148 | subdid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) = ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) ) |
| 150 | 149 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) ) |
| 151 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) | |
| 152 | 8 144 151 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 153 | 8 148 74 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · 𝑦 ) ∈ ℂ ) |
| 154 | 152 153 | npcand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 155 | 150 154 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 156 | 155 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 157 | 144 148 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) |
| 158 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) | |
| 159 | 8 157 158 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) |
| 160 | efadd | ⊢ ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) | |
| 161 | 159 153 160 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 162 | 2cn | ⊢ 2 ∈ ℂ | |
| 163 | 137 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 164 | mul12 | ⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) | |
| 165 | 8 162 163 164 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
| 166 | 165 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 167 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) | |
| 168 | 8 163 167 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 169 | 2z | ⊢ 2 ∈ ℤ | |
| 170 | efexp | ⊢ ( ( ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) | |
| 171 | 168 169 170 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
| 172 | 166 171 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
| 173 | 137 | recoscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 174 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 175 | 174 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ◡ abs “ { 1 } ) ) |
| 176 | fniniseg | ⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) ) | |
| 177 | 17 176 | ax-mp | ⊢ ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 178 | 175 177 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 179 | 178 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 180 | 179 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 181 | 180 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 182 | cosq14ge0 | ⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) | |
| 183 | 136 182 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 184 | 179 | sqrtrege0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
| 185 | sincossq | ⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) | |
| 186 | 163 185 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) |
| 187 | 179 | sqsqrtd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 188 | 187 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( abs ‘ 𝑥 ) ) |
| 189 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 190 | absexp | ⊢ ( ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) | |
| 191 | 180 189 190 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 192 | 178 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ 𝑥 ) = 1 ) |
| 193 | 188 191 192 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
| 194 | 180 | absvalsq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 195 | 186 193 194 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 196 | 6 | fveq1i | ⊢ ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
| 197 | 136 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 198 | 196 197 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 199 | f1ocnvfv2 | ⊢ ( ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) | |
| 200 | 131 127 199 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 201 | 198 200 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 202 | 201 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 203 | 195 202 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 204 | 163 | sincld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 205 | 204 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 206 | 163 | coscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 207 | 206 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 208 | 205 207 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) |
| 209 | 181 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℂ ) |
| 210 | 209 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
| 211 | 202 205 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
| 212 | 210 211 | pncand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 213 | 203 208 212 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 214 | 173 181 183 184 213 | sq11d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
| 215 | 201 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
| 216 | 214 215 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 217 | efival | ⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) | |
| 218 | 163 217 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
| 219 | 180 | replimd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
| 220 | 216 218 219 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( √ ‘ 𝑥 ) ) |
| 221 | 220 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) = ( ( √ ‘ 𝑥 ) ↑ 2 ) ) |
| 222 | 172 221 187 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
| 223 | 222 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
| 224 | 156 161 223 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = 𝑥 ) |
| 225 | 153 78 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 226 | 225 | mullidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 227 | 224 226 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 228 | 141 227 | imbitrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 229 | efeq1 | ⊢ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) | |
| 230 | 159 229 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 231 | divcan5 | ⊢ ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) | |
| 232 | 63 65 231 | mp3an23 | ⊢ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 233 | 157 232 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
| 234 | 233 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
| 235 | 230 234 | bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ) ) |
| 236 | 91 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 237 | 236 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
| 238 | 228 235 237 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 239 | 238 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 240 | 140 239 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 241 | 240 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 242 | dffo3 | ⊢ ( 𝐹 : 𝐷 –onto→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 243 | 23 241 242 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐷 –onto→ 𝐶 ) |
| 244 | df-f1o | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐷 –1-1→ 𝐶 ∧ 𝐹 : 𝐷 –onto→ 𝐶 ) ) | |
| 245 | 116 243 244 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |