This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose exponential is one is an integer multiple of 2pi i . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efeq1 | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | ine0 | ⊢ i ≠ 0 | |
| 4 | divcl | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) | |
| 5 | 2 3 4 | mp3an23 | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
| 6 | 1 5 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
| 7 | sineq0 | ⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) |
| 9 | sinval | ⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) | |
| 10 | 6 9 | syl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) |
| 11 | divcan2 | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) | |
| 12 | 2 3 11 | mp3an23 | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
| 13 | 1 12 | syl | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ ( 𝐴 / 2 ) ) ) |
| 15 | mulneg1 | ⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) | |
| 16 | 2 6 15 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) |
| 17 | 13 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
| 18 | 16 17 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ - ( 𝐴 / 2 ) ) ) |
| 20 | 14 19 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
| 22 | 10 21 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
| 23 | 22 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ) ) |
| 24 | efcl | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) | |
| 25 | 1 24 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 26 | 1 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 2 ) ∈ ℂ ) |
| 27 | efcl | ⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 29 | 25 28 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ) |
| 30 | 2cn | ⊢ 2 ∈ ℂ | |
| 31 | 30 2 | mulcli | ⊢ ( 2 · i ) ∈ ℂ |
| 32 | 2ne0 | ⊢ 2 ≠ 0 | |
| 33 | 30 2 32 3 | mulne0i | ⊢ ( 2 · i ) ≠ 0 |
| 34 | diveq0 | ⊢ ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) | |
| 35 | 31 33 34 | mp3an23 | ⊢ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 36 | 29 35 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 37 | efne0 | ⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) | |
| 38 | 26 37 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) |
| 39 | 25 28 28 38 | divsubdird | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) ) |
| 40 | efsub | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ - ( 𝐴 / 2 ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) | |
| 41 | 1 26 40 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
| 42 | 1 1 | subnegd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
| 43 | 2halves | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) | |
| 44 | 42 43 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = 𝐴 ) |
| 45 | 44 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 46 | 41 45 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 47 | 28 38 | dividd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 1 ) |
| 48 | 46 47 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
| 49 | 39 48 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
| 50 | 49 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ 𝐴 ) − 1 ) = 0 ) ) |
| 51 | 29 28 38 | diveq0ad | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 52 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 53 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 54 | subeq0 | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) | |
| 55 | 52 53 54 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 56 | 50 51 55 | 3bitr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 57 | 23 36 56 | 3bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 58 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 59 | 2 3 | pm3.2i | ⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
| 60 | divdiv32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) | |
| 61 | 58 59 60 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) |
| 62 | 61 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( ( ( 𝐴 / i ) / 2 ) / π ) ) |
| 63 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) ∈ ℂ ) | |
| 64 | 2 3 63 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) ∈ ℂ ) |
| 65 | picn | ⊢ π ∈ ℂ | |
| 66 | pire | ⊢ π ∈ ℝ | |
| 67 | pipos | ⊢ 0 < π | |
| 68 | 66 67 | gt0ne0ii | ⊢ π ≠ 0 |
| 69 | 65 68 | pm3.2i | ⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
| 70 | divdiv1 | ⊢ ( ( ( 𝐴 / i ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) | |
| 71 | 58 69 70 | mp3an23 | ⊢ ( ( 𝐴 / i ) ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
| 72 | 64 71 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
| 73 | 30 65 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 74 | 30 65 32 68 | mulne0i | ⊢ ( 2 · π ) ≠ 0 |
| 75 | 73 74 | pm3.2i | ⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
| 76 | divdiv1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ) → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) | |
| 77 | 59 75 76 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 78 | 72 77 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 79 | 62 78 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 80 | 79 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 81 | 8 57 80 | 3bitr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |