This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efif1o . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | ||
| Assertion | efif1olem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| 2 | efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| 3 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 4 | 3 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ◡ abs “ { 1 } ) ) |
| 5 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 6 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 7 | fniniseg | ⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) ) | |
| 8 | 5 6 7 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 9 | 4 8 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 11 | 10 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 12 | 11 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 13 | absimle | ⊢ ( ( √ ‘ 𝑥 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) | |
| 14 | 11 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) |
| 15 | 10 | sqsqrtd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( abs ‘ 𝑥 ) ) |
| 17 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 18 | absexp | ⊢ ( ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) | |
| 19 | 11 17 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
| 20 | 9 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ 𝑥 ) = 1 ) |
| 21 | 16 19 20 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
| 22 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 23 | 21 22 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 24 | 11 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
| 25 | 11 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) |
| 26 | 1re | ⊢ 1 ∈ ℝ | |
| 27 | 0le1 | ⊢ 0 ≤ 1 | |
| 28 | sq11 | ⊢ ( ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) | |
| 29 | 26 27 28 | mpanr12 | ⊢ ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( √ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) |
| 30 | 24 25 29 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) ) |
| 31 | 23 30 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( √ ‘ 𝑥 ) ) = 1 ) |
| 32 | 14 31 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ) |
| 33 | absle | ⊢ ( ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ↔ ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) ) | |
| 34 | 12 26 33 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ≤ 1 ↔ ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) ) |
| 35 | 32 34 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) |
| 36 | 35 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
| 37 | 35 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) |
| 38 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 39 | 38 26 | elicc2i | ⊢ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ↔ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ∧ - 1 ≤ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ≤ 1 ) ) |
| 40 | 12 36 37 39 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |