This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a number between -upi / 2 and pi / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosq14ge0 | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 2 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 3 | 2 1 | elicc2i | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ - ( π / 2 ) ≤ 𝐴 ∧ 𝐴 ≤ ( π / 2 ) ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℝ ) |
| 5 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) |
| 7 | 3 | simp3bi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ≤ ( π / 2 ) ) |
| 8 | subge0 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 ≤ ( π / 2 ) ) ) | |
| 9 | 1 4 8 | sylancr | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( 0 ≤ ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 ≤ ( π / 2 ) ) ) |
| 10 | 7 9 | mpbird | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( ( π / 2 ) − 𝐴 ) ) |
| 11 | picn | ⊢ π ∈ ℂ | |
| 12 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 13 | 11 12 | ax-mp | ⊢ ( π / 2 ) ∈ ℂ |
| 14 | 13 | negcli | ⊢ - ( π / 2 ) ∈ ℂ |
| 15 | 11 13 | negsubi | ⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 16 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 17 | 11 13 13 16 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 18 | 15 17 | eqtri | ⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 19 | 13 11 14 18 | subaddrii | ⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 20 | 3 | simp2bi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → - ( π / 2 ) ≤ 𝐴 ) |
| 21 | 19 20 | eqbrtrid | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − π ) ≤ 𝐴 ) |
| 22 | pire | ⊢ π ∈ ℝ | |
| 23 | suble | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) | |
| 24 | 1 22 23 | mp3an13 | ⊢ ( 𝐴 ∈ ℝ → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) |
| 25 | 4 24 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( π / 2 ) − 𝐴 ) ≤ π ↔ ( ( π / 2 ) − π ) ≤ 𝐴 ) ) |
| 26 | 21 25 | mpbird | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ≤ π ) |
| 27 | 0re | ⊢ 0 ∈ ℝ | |
| 28 | 27 22 | elicc2i | ⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) ≤ π ) ) |
| 29 | 6 10 26 28 | syl3anbrc | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ) |
| 30 | sinq12ge0 | ⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
| 32 | 4 | recnd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 33 | sinhalfpim | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) | |
| 34 | 32 33 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
| 35 | 31 34 | breqtrd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ 𝐴 ) ) |