This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divid | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐶 / 𝐶 ) = 1 ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐶 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) = ( 1 · ( 𝐴 / 𝐵 ) ) ) |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) = ( 1 · ( 𝐴 / 𝐵 ) ) ) |
| 4 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) | |
| 7 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 8 | divmuldiv | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ) → ( ( 𝐶 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) ) | |
| 9 | 4 5 6 7 8 | syl22anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 / 𝐶 ) · ( 𝐴 / 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) ) |
| 10 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 11 | 10 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 12 | 11 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 1 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) |
| 14 | 3 9 13 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) |