This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of an imaginary number maps any open-below, closed-above interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | ||
| efif1o.3 | ⊢ 𝐷 = ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) | ||
| Assertion | efif1o | ⊢ ( 𝐴 ∈ ℝ → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1o.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| 2 | efif1o.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| 3 | efif1o.3 | ⊢ 𝐷 = ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) | |
| 4 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 5 | 2re | ⊢ 2 ∈ ℝ | |
| 6 | pire | ⊢ π ∈ ℝ | |
| 7 | 5 6 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 8 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) |
| 10 | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 + ( 2 · π ) ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) ) ) |
| 12 | simp1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ ( 𝐴 + ( 2 · π ) ) ) → 𝑥 ∈ ℝ ) | |
| 13 | 11 12 | biimtrdi | ⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) → 𝑥 ∈ ℝ ) ) |
| 14 | 13 | ssrdv | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,] ( 𝐴 + ( 2 · π ) ) ) ⊆ ℝ ) |
| 15 | 3 14 | eqsstrid | ⊢ ( 𝐴 ∈ ℝ → 𝐷 ⊆ ℝ ) |
| 16 | 3 | efif1olem1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 17 | 3 | efif1olem2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 18 | eqid | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 19 | 1 2 15 16 17 18 | efif1olem4 | ⊢ ( 𝐴 ∈ ℝ → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |