This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | diveq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | divmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = ( 𝐵 · 0 ) ) ) | |
| 3 | 1 2 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = ( 𝐵 · 0 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = ( 𝐵 · 0 ) ) ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) | |
| 6 | 5 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 0 ) = 0 ) |
| 7 | 6 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 = ( 𝐵 · 0 ) ↔ 𝐴 = 0 ) ) |
| 8 | 4 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) |