This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resinf1o | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recosf1o | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) = ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) | |
| 3 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 4 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 5 | iccssre | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) | |
| 6 | 4 3 5 | mp2an | ⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
| 7 | 6 | sseli | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ∈ ℝ ) |
| 8 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) |
| 10 | 4 3 | elicc2i | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ - ( π / 2 ) ≤ 𝑥 ∧ 𝑥 ≤ ( π / 2 ) ) ) |
| 11 | 10 | simp3bi | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ≤ ( π / 2 ) ) |
| 12 | subge0 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) | |
| 13 | 3 7 12 | sylancr | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) |
| 14 | 11 13 | mpbird | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( ( π / 2 ) − 𝑥 ) ) |
| 15 | 3 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 16 | picn | ⊢ π ∈ ℂ | |
| 17 | 15 | negcli | ⊢ - ( π / 2 ) ∈ ℂ |
| 18 | 16 15 | negsubi | ⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 19 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 20 | 16 15 15 19 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 21 | 18 20 | eqtri | ⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 22 | 15 16 17 21 | subaddrii | ⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 23 | 10 | simp2bi | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → - ( π / 2 ) ≤ 𝑥 ) |
| 24 | 22 23 | eqbrtrid | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − π ) ≤ 𝑥 ) |
| 25 | pire | ⊢ π ∈ ℝ | |
| 26 | suble | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( π / 2 ) − π ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) | |
| 27 | 3 25 7 26 | mp3an12i | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( π / 2 ) − π ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
| 28 | 24 27 | mpbid | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ≤ π ) |
| 29 | 0re | ⊢ 0 ∈ ℝ | |
| 30 | 29 25 | elicc2i | ⊢ ( ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − 𝑥 ) ∧ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
| 31 | 9 14 28 30 | syl3anbrc | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ) |
| 32 | 31 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ) |
| 33 | 29 25 | elicc2i | ⊢ ( 𝑦 ∈ ( 0 [,] π ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 ≤ π ) ) |
| 34 | 33 | simp1bi | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ∈ ℝ ) |
| 35 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( π / 2 ) − 𝑦 ) ∈ ℝ ) | |
| 36 | 3 34 35 | sylancr | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ∈ ℝ ) |
| 37 | 33 | simp3bi | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ≤ π ) |
| 38 | 15 15 | subnegi | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = ( ( π / 2 ) + ( π / 2 ) ) |
| 39 | 38 19 | eqtri | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = π |
| 40 | 37 39 | breqtrrdi | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) |
| 41 | lesub | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ - ( π / 2 ) ∈ ℝ ) → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) | |
| 42 | 3 4 41 | mp3an23 | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) |
| 43 | 34 42 | syl | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) |
| 44 | 40 43 | mpbid | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) |
| 45 | 15 | subidi | ⊢ ( ( π / 2 ) − ( π / 2 ) ) = 0 |
| 46 | 33 | simp2bi | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → 0 ≤ 𝑦 ) |
| 47 | 45 46 | eqbrtrid | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ) |
| 48 | suble | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ↔ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) | |
| 49 | 3 3 34 48 | mp3an12i | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ↔ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) |
| 50 | 47 49 | mpbid | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) |
| 51 | 4 3 | elicc2i | ⊢ ( ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ( π / 2 ) − 𝑦 ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ∧ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) |
| 52 | 36 44 50 51 | syl3anbrc | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 54 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) | |
| 55 | 29 25 54 | mp2an | ⊢ ( 0 [,] π ) ⊆ ℝ |
| 56 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 57 | 55 56 | sstri | ⊢ ( 0 [,] π ) ⊆ ℂ |
| 58 | 57 | sseli | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ∈ ℂ ) |
| 59 | 6 56 | sstri | ⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℂ |
| 60 | 59 | sseli | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ∈ ℂ ) |
| 61 | subsub23 | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) | |
| 62 | 15 61 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
| 63 | 58 60 62 | syl2anr | ⊢ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
| 64 | 63 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
| 65 | eqcom | ⊢ ( 𝑥 = ( ( π / 2 ) − 𝑦 ) ↔ ( ( π / 2 ) − 𝑦 ) = 𝑥 ) | |
| 66 | eqcom | ⊢ ( 𝑦 = ( ( π / 2 ) − 𝑥 ) ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) | |
| 67 | 64 65 66 | 3bitr4g | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) ) → ( 𝑥 = ( ( π / 2 ) − 𝑦 ) ↔ 𝑦 = ( ( π / 2 ) − 𝑥 ) ) ) |
| 68 | 2 32 53 67 | f1o2d | ⊢ ( ⊤ → ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) ) |
| 69 | 68 | mptru | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) |
| 70 | f1oco | ⊢ ( ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) ) → ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) | |
| 71 | 1 69 70 | mp2an | ⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
| 72 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 73 | ffn | ⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) | |
| 74 | 72 73 | ax-mp | ⊢ cos Fn ℂ |
| 75 | fnssres | ⊢ ( ( cos Fn ℂ ∧ ( 0 [,] π ) ⊆ ℂ ) → ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ) | |
| 76 | 74 57 75 | mp2an | ⊢ ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) |
| 77 | 2 31 | fmpti | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) |
| 78 | fnfco | ⊢ ( ( ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) ) → ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 79 | 76 77 78 | mp2an | ⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 80 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 81 | ffn | ⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) | |
| 82 | 80 81 | ax-mp | ⊢ sin Fn ℂ |
| 83 | fnssres | ⊢ ( ( sin Fn ℂ ∧ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℂ ) → ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 84 | 82 59 83 | mp2an | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 85 | eqfnfv | ⊢ ( ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ↔ ∀ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) ) | |
| 86 | 79 84 85 | mp2an | ⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ↔ ∀ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) |
| 87 | 77 | ffvelcdmi | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ∈ ( 0 [,] π ) ) |
| 88 | 87 | fvresd | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( cos ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 89 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( π / 2 ) − 𝑥 ) = ( ( π / 2 ) − 𝑦 ) ) | |
| 90 | ovex | ⊢ ( ( π / 2 ) − 𝑦 ) ∈ V | |
| 91 | 89 2 90 | fvmpt | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) = ( ( π / 2 ) − 𝑦 ) ) |
| 92 | 91 | fveq2d | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) ) |
| 93 | 59 | sseli | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑦 ∈ ℂ ) |
| 94 | coshalfpim | ⊢ ( 𝑦 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) = ( sin ‘ 𝑦 ) ) | |
| 95 | 93 94 | syl | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) = ( sin ‘ 𝑦 ) ) |
| 96 | 88 92 95 | 3eqtrd | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( sin ‘ 𝑦 ) ) |
| 97 | fvco3 | ⊢ ( ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) ∧ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) | |
| 98 | 77 97 | mpan | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 99 | fvres | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) = ( sin ‘ 𝑦 ) ) | |
| 100 | 96 98 99 | 3eqtr4d | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) |
| 101 | 86 100 | mprgbir | ⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 102 | f1oeq1 | ⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) ) | |
| 103 | 101 102 | ax-mp | ⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
| 104 | 71 103 | mpbi | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |