This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of an integer power. Corollary 15-4.4 of Gleason p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · 𝐴 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 2 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 · 𝑁 ) = ( 𝑁 · 𝐴 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 · 𝑁 ) = ( 𝑁 · 𝐴 ) ) |
| 4 | 3 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( exp ‘ ( 𝑁 · 𝐴 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 0 ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑗 = 0 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 0 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑗 = 0 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑗 = 0 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 0 ) ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑘 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 𝑘 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 · 𝑗 ) = ( 𝐴 · ( 𝑘 + 1 ) ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑗 = - 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · - 𝑘 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑗 = - 𝑘 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · - 𝑘 ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑗 = - 𝑘 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝑗 = - 𝑘 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑁 ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑗 = 𝑁 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 𝑁 ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 25 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 26 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 27 | 26 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · 0 ) ) = ( exp ‘ 0 ) ) |
| 28 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 29 | 28 | exp0d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) ↑ 0 ) = 1 ) |
| 30 | 25 27 29 | 3eqtr4a | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · 0 ) ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) |
| 31 | oveq1 | ⊢ ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) | |
| 32 | 31 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
| 33 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 34 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 35 | adddi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) | |
| 36 | 34 35 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
| 37 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 40 | 36 39 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 41 | 33 40 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 43 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) | |
| 44 | 33 43 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
| 45 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 46 | efadd | ⊢ ( ( ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) | |
| 47 | 44 45 46 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
| 48 | 42 47 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
| 50 | expp1 | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) | |
| 51 | 28 50 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
| 53 | 32 49 52 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
| 54 | 53 | exp31 | ⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ0 → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 55 | oveq2 | ⊢ ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) | |
| 56 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 57 | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · - 𝑘 ) = - ( 𝐴 · 𝑘 ) ) | |
| 58 | 56 57 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · - 𝑘 ) = - ( 𝐴 · 𝑘 ) ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( exp ‘ - ( 𝐴 · 𝑘 ) ) ) |
| 60 | 56 43 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
| 61 | efneg | ⊢ ( ( 𝐴 · 𝑘 ) ∈ ℂ → ( exp ‘ - ( 𝐴 · 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ - ( 𝐴 · 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) |
| 63 | 59 62 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) |
| 64 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 65 | expneg | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) | |
| 66 | 28 64 65 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 67 | 63 66 | eqeq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ↔ ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 68 | 55 67 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) |
| 69 | 68 | ex | ⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) ) |
| 70 | 8 12 16 20 24 30 54 69 | zindd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 71 | 70 | imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |
| 72 | 4 71 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · 𝐴 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |