This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sine squared plus cosine squared is 1. Equation 17 of Gleason p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincossq | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 2 | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) | |
| 3 | 1 2 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
| 4 | negid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( cos ‘ 0 ) ) |
| 6 | cos0 | ⊢ ( cos ‘ 0 ) = 1 | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = 1 ) |
| 8 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | 8 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 10 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 11 | 10 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 12 | 9 11 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 13 | 10 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
| 14 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
| 16 | 13 15 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) ) |
| 17 | 8 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
| 18 | sinneg | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) | |
| 19 | 18 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ - 𝐴 ) = - - ( sin ‘ 𝐴 ) ) |
| 20 | 8 | negnegd | ⊢ ( 𝐴 ∈ ℂ → - - ( sin ‘ 𝐴 ) = ( sin ‘ 𝐴 ) ) |
| 21 | 19 20 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ - 𝐴 ) = ( sin ‘ 𝐴 ) ) |
| 22 | 21 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
| 23 | 17 22 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) ) |
| 24 | 1 | sincld | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) ∈ ℂ ) |
| 25 | 8 24 | mulneg2d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) |
| 26 | 23 25 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) |
| 27 | 16 26 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
| 28 | 1 | coscld | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) ∈ ℂ ) |
| 29 | 10 28 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) ∈ ℂ ) |
| 30 | 8 24 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ∈ ℂ ) |
| 31 | 29 30 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
| 32 | 12 27 31 | 3eqtrrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 33 | 3 7 32 | 3eqtr3rd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |