This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnflt2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnflt2.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| cantnflt2.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | ||
| cantnflt2.s | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐶 ) | ||
| Assertion | cantnflt2 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnflt2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 5 | cantnflt2.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 6 | cantnflt2.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | |
| 7 | cantnflt2.s | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐶 ) | |
| 8 | eqid | ⊢ OrdIso ( E , ( 𝐹 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 9 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 10 | 1 2 3 8 4 9 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) ) |
| 11 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 12 | 8 | oion | ⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ∈ On ) |
| 13 | sucidg | ⊢ ( dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ∈ On → dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ∈ suc dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( 𝜑 → dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ∈ suc dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
| 15 | 1 2 3 8 4 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ∈ ω ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 17 | 8 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → OrdIso ( E , ( 𝐹 supp ∅ ) ) Isom E , E ( dom OrdIso ( E , ( 𝐹 supp ∅ ) ) , ( 𝐹 supp ∅ ) ) ) |
| 18 | 11 16 17 | syl2anc | ⊢ ( 𝜑 → OrdIso ( E , ( 𝐹 supp ∅ ) ) Isom E , E ( dom OrdIso ( E , ( 𝐹 supp ∅ ) ) , ( 𝐹 supp ∅ ) ) ) |
| 19 | isof1o | ⊢ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) Isom E , E ( dom OrdIso ( E , ( 𝐹 supp ∅ ) ) , ( 𝐹 supp ∅ ) ) → OrdIso ( E , ( 𝐹 supp ∅ ) ) : dom OrdIso ( E , ( 𝐹 supp ∅ ) ) –1-1-onto→ ( 𝐹 supp ∅ ) ) | |
| 20 | f1ofo | ⊢ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) : dom OrdIso ( E , ( 𝐹 supp ∅ ) ) –1-1-onto→ ( 𝐹 supp ∅ ) → OrdIso ( E , ( 𝐹 supp ∅ ) ) : dom OrdIso ( E , ( 𝐹 supp ∅ ) ) –onto→ ( 𝐹 supp ∅ ) ) | |
| 21 | foima | ⊢ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) : dom OrdIso ( E , ( 𝐹 supp ∅ ) ) –onto→ ( 𝐹 supp ∅ ) → ( OrdIso ( E , ( 𝐹 supp ∅ ) ) “ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) = ( 𝐹 supp ∅ ) ) | |
| 22 | 18 19 20 21 | 4syl | ⊢ ( 𝜑 → ( OrdIso ( E , ( 𝐹 supp ∅ ) ) “ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) = ( 𝐹 supp ∅ ) ) |
| 23 | 22 7 | eqsstrd | ⊢ ( 𝜑 → ( OrdIso ( E , ( 𝐹 supp ∅ ) ) “ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) ⊆ 𝐶 ) |
| 24 | 1 2 3 8 4 9 5 14 6 23 | cantnflt | ⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝐹 supp ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 25 | 10 24 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |