This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppmptif.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fsuppmptif.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fsuppmptif.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| fsuppmptif.s | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | ||
| Assertion | fsuppmptif | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptif.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fsuppmptif.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fsuppmptif.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 4 | fsuppmptif.s | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 5 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑍 ∈ 𝑊 ) |
| 7 | ifexg | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ∈ V ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ∈ V ) |
| 9 | 8 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) : 𝐴 ⟶ V ) |
| 10 | 9 | ffund | ⊢ ( 𝜑 → Fun ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) ) |
| 11 | 4 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 12 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) | |
| 13 | 1 12 2 3 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 14 | 13 | ifeq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) = if ( 𝑘 ∈ 𝐷 , 𝑍 , 𝑍 ) ) |
| 15 | ifid | ⊢ if ( 𝑘 ∈ 𝐷 , 𝑍 , 𝑍 ) = 𝑍 | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) = 𝑍 ) |
| 17 | 16 2 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| 18 | 11 17 | ssfid | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) supp 𝑍 ) ∈ Fin ) |
| 19 | 2 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) ∈ V ) |
| 20 | isfsupp | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) finSupp 𝑍 ↔ ( Fun ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) ∧ ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) supp 𝑍 ) ∈ Fin ) ) ) | |
| 21 | 19 3 20 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) finSupp 𝑍 ↔ ( Fun ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) ∧ ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) supp 𝑍 ) ∈ Fin ) ) ) |
| 22 | 10 18 21 | mpbir2and | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 𝑍 ) ) finSupp 𝑍 ) |