This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Use the pigeonhole principle to show that the sets { m ^ 2 | m e. ( 0 ... N ) } and { -u 1 - n ^ 2 | n e. ( 0 ... N ) } have a common element, mod P . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sqlem11.5 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } | ||
| 4sqlem11.6 | ⊢ 𝐹 = ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) | ||
| Assertion | 4sqlem11 | ⊢ ( 𝜑 → ( 𝐴 ∩ ran 𝐹 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sqlem11.5 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } | |
| 6 | 4sqlem11.6 | ⊢ 𝐹 = ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) | |
| 7 | fzfid | ⊢ ( 𝜑 → ( 0 ... ( 𝑃 − 1 ) ) ∈ Fin ) | |
| 8 | elfzelz | ⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) → 𝑚 ∈ ℤ ) | |
| 9 | zsqcl | ⊢ ( 𝑚 ∈ ℤ → ( 𝑚 ↑ 2 ) ∈ ℤ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) → ( 𝑚 ↑ 2 ) ∈ ℤ ) |
| 11 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 13 | zmodfz | ⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) | |
| 14 | 10 12 13 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 15 | eleq1a | ⊢ ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) → ( 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) → 𝑢 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) → 𝑢 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 17 | 16 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) → 𝑢 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 18 | 17 | abssdv | ⊢ ( 𝜑 → { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } ⊆ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 19 | 5 18 | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 20 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 22 | peano2zm | ⊢ ( 𝑃 ∈ ℤ → ( 𝑃 − 1 ) ∈ ℤ ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℤ ) |
| 24 | 23 | zcnd | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℂ ) |
| 25 | 24 | addlidd | ⊢ ( 𝜑 → ( 0 + ( 𝑃 − 1 ) ) = ( 𝑃 − 1 ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝜑 → ( ( 0 + ( 𝑃 − 1 ) ) − 𝑣 ) = ( ( 𝑃 − 1 ) − 𝑣 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 0 + ( 𝑃 − 1 ) ) − 𝑣 ) = ( ( 𝑃 − 1 ) − 𝑣 ) ) |
| 28 | 19 | sselda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 29 | fzrev3i | ⊢ ( 𝑣 ∈ ( 0 ... ( 𝑃 − 1 ) ) → ( ( 0 + ( 𝑃 − 1 ) ) − 𝑣 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 0 + ( 𝑃 − 1 ) ) − 𝑣 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 31 | 27 30 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑃 − 1 ) − 𝑣 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 32 | 31 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 33 | 32 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 34 | 19 33 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ ran 𝐹 ) ⊆ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 35 | 7 34 | ssfid | ⊢ ( 𝜑 → ( 𝐴 ∪ ran 𝐹 ) ∈ Fin ) |
| 36 | hashcl | ⊢ ( ( 𝐴 ∪ ran 𝐹 ) ∈ Fin → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ∈ ℕ0 ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ∈ ℕ0 ) |
| 38 | 37 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 39 | 21 | zred | ⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 40 | ssdomg | ⊢ ( ( 0 ... ( 𝑃 − 1 ) ) ∈ Fin → ( ( 𝐴 ∪ ran 𝐹 ) ⊆ ( 0 ... ( 𝑃 − 1 ) ) → ( 𝐴 ∪ ran 𝐹 ) ≼ ( 0 ... ( 𝑃 − 1 ) ) ) ) | |
| 41 | 7 34 40 | sylc | ⊢ ( 𝜑 → ( 𝐴 ∪ ran 𝐹 ) ≼ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 42 | hashdom | ⊢ ( ( ( 𝐴 ∪ ran 𝐹 ) ∈ Fin ∧ ( 0 ... ( 𝑃 − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ≤ ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) ↔ ( 𝐴 ∪ ran 𝐹 ) ≼ ( 0 ... ( 𝑃 − 1 ) ) ) ) | |
| 43 | 35 7 42 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ≤ ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) ↔ ( 𝐴 ∪ ran 𝐹 ) ≼ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 44 | 41 43 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ≤ ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 45 | fz01en | ⊢ ( 𝑃 ∈ ℤ → ( 0 ... ( 𝑃 − 1 ) ) ≈ ( 1 ... 𝑃 ) ) | |
| 46 | 21 45 | syl | ⊢ ( 𝜑 → ( 0 ... ( 𝑃 − 1 ) ) ≈ ( 1 ... 𝑃 ) ) |
| 47 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑃 ) ∈ Fin ) | |
| 48 | hashen | ⊢ ( ( ( 0 ... ( 𝑃 − 1 ) ) ∈ Fin ∧ ( 1 ... 𝑃 ) ∈ Fin ) → ( ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) = ( ♯ ‘ ( 1 ... 𝑃 ) ) ↔ ( 0 ... ( 𝑃 − 1 ) ) ≈ ( 1 ... 𝑃 ) ) ) | |
| 49 | 7 47 48 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) = ( ♯ ‘ ( 1 ... 𝑃 ) ) ↔ ( 0 ... ( 𝑃 − 1 ) ) ≈ ( 1 ... 𝑃 ) ) ) |
| 50 | 46 49 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) = ( ♯ ‘ ( 1 ... 𝑃 ) ) ) |
| 51 | 12 | nnnn0d | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 52 | hashfz1 | ⊢ ( 𝑃 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑃 ) ) = 𝑃 ) | |
| 53 | 51 52 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑃 ) ) = 𝑃 ) |
| 54 | 50 53 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... ( 𝑃 − 1 ) ) ) = 𝑃 ) |
| 55 | 44 54 | breqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ≤ 𝑃 ) |
| 56 | 38 39 55 | lensymd | ⊢ ( 𝜑 → ¬ 𝑃 < ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ) |
| 57 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → 𝑃 ∈ ℝ ) |
| 58 | 57 | ltp1d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → 𝑃 < ( 𝑃 + 1 ) ) |
| 59 | 2 | nncnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 60 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 61 | 59 59 60 60 | add4d | ⊢ ( 𝜑 → ( ( 𝑁 + 𝑁 ) + ( 1 + 1 ) ) = ( ( 𝑁 + 1 ) + ( 𝑁 + 1 ) ) ) |
| 62 | 3 | oveq1d | ⊢ ( 𝜑 → ( 𝑃 + 1 ) = ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) ) |
| 63 | 2cn | ⊢ 2 ∈ ℂ | |
| 64 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 2 · 𝑁 ) ∈ ℂ ) | |
| 65 | 63 59 64 | sylancr | ⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 66 | 65 60 60 | addassd | ⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) ) |
| 67 | 59 | 2timesd | ⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 68 | 67 | oveq1d | ⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) = ( ( 𝑁 + 𝑁 ) + ( 1 + 1 ) ) ) |
| 69 | 62 66 68 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑃 + 1 ) = ( ( 𝑁 + 𝑁 ) + ( 1 + 1 ) ) ) |
| 70 | 14 | ex | ⊢ ( 𝜑 → ( 𝑚 ∈ ( 0 ... 𝑁 ) → ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 71 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑃 ∈ ℕ ) |
| 72 | 8 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℤ ) |
| 73 | 72 9 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ↑ 2 ) ∈ ℤ ) |
| 74 | elfzelz | ⊢ ( 𝑢 ∈ ( 0 ... 𝑁 ) → 𝑢 ∈ ℤ ) | |
| 75 | 74 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑢 ∈ ℤ ) |
| 76 | zsqcl | ⊢ ( 𝑢 ∈ ℤ → ( 𝑢 ↑ 2 ) ∈ ℤ ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑢 ↑ 2 ) ∈ ℤ ) |
| 78 | moddvds | ⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑚 ↑ 2 ) ∈ ℤ ∧ ( 𝑢 ↑ 2 ) ∈ ℤ ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ↔ 𝑃 ∥ ( ( 𝑚 ↑ 2 ) − ( 𝑢 ↑ 2 ) ) ) ) | |
| 79 | 71 73 77 78 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ↔ 𝑃 ∥ ( ( 𝑚 ↑ 2 ) − ( 𝑢 ↑ 2 ) ) ) ) |
| 80 | 72 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℂ ) |
| 81 | 75 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑢 ∈ ℂ ) |
| 82 | subsq | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) − ( 𝑢 ↑ 2 ) ) = ( ( 𝑚 + 𝑢 ) · ( 𝑚 − 𝑢 ) ) ) | |
| 83 | 80 81 82 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑚 ↑ 2 ) − ( 𝑢 ↑ 2 ) ) = ( ( 𝑚 + 𝑢 ) · ( 𝑚 − 𝑢 ) ) ) |
| 84 | 83 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( ( 𝑚 ↑ 2 ) − ( 𝑢 ↑ 2 ) ) ↔ 𝑃 ∥ ( ( 𝑚 + 𝑢 ) · ( 𝑚 − 𝑢 ) ) ) ) |
| 85 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑃 ∈ ℙ ) |
| 86 | 72 75 | zaddcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 𝑢 ) ∈ ℤ ) |
| 87 | 72 75 | zsubcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 − 𝑢 ) ∈ ℤ ) |
| 88 | euclemma | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑚 + 𝑢 ) ∈ ℤ ∧ ( 𝑚 − 𝑢 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝑚 + 𝑢 ) · ( 𝑚 − 𝑢 ) ) ↔ ( 𝑃 ∥ ( 𝑚 + 𝑢 ) ∨ 𝑃 ∥ ( 𝑚 − 𝑢 ) ) ) ) | |
| 89 | 85 86 87 88 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( ( 𝑚 + 𝑢 ) · ( 𝑚 − 𝑢 ) ) ↔ ( 𝑃 ∥ ( 𝑚 + 𝑢 ) ∨ 𝑃 ∥ ( 𝑚 − 𝑢 ) ) ) ) |
| 90 | 79 84 89 | 3bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ↔ ( 𝑃 ∥ ( 𝑚 + 𝑢 ) ∨ 𝑃 ∥ ( 𝑚 − 𝑢 ) ) ) ) |
| 91 | 86 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 𝑢 ) ∈ ℝ ) |
| 92 | 2re | ⊢ 2 ∈ ℝ | |
| 93 | 2 | nnred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 94 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 2 · 𝑁 ) ∈ ℝ ) | |
| 95 | 92 93 94 | sylancr | ⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 97 | 85 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑃 ∈ ℤ ) |
| 98 | 97 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑃 ∈ ℝ ) |
| 99 | 72 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℝ ) |
| 100 | 75 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑢 ∈ ℝ ) |
| 101 | 93 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
| 102 | elfzle2 | ⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) → 𝑚 ≤ 𝑁 ) | |
| 103 | 102 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ≤ 𝑁 ) |
| 104 | elfzle2 | ⊢ ( 𝑢 ∈ ( 0 ... 𝑁 ) → 𝑢 ≤ 𝑁 ) | |
| 105 | 104 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑢 ≤ 𝑁 ) |
| 106 | 99 100 101 101 103 105 | le2addd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 𝑢 ) ≤ ( 𝑁 + 𝑁 ) ) |
| 107 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
| 108 | 107 | 2timesd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 109 | 106 108 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 𝑢 ) ≤ ( 2 · 𝑁 ) ) |
| 110 | 95 | ltp1d | ⊢ ( 𝜑 → ( 2 · 𝑁 ) < ( ( 2 · 𝑁 ) + 1 ) ) |
| 111 | 110 3 | breqtrrd | ⊢ ( 𝜑 → ( 2 · 𝑁 ) < 𝑃 ) |
| 112 | 111 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 2 · 𝑁 ) < 𝑃 ) |
| 113 | 91 96 98 109 112 | lelttrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 𝑢 ) < 𝑃 ) |
| 114 | 91 98 | ltnled | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑚 + 𝑢 ) < 𝑃 ↔ ¬ 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) |
| 115 | 113 114 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ¬ 𝑃 ≤ ( 𝑚 + 𝑢 ) ) |
| 116 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ¬ 𝑃 ≤ ( 𝑚 + 𝑢 ) ) |
| 117 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 𝑃 ∈ ℤ ) |
| 118 | 86 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑚 + 𝑢 ) ∈ ℤ ) |
| 119 | 1red | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 1 ∈ ℝ ) | |
| 120 | nn0abscl | ⊢ ( ( 𝑚 − 𝑢 ) ∈ ℤ → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ0 ) | |
| 121 | 87 120 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ0 ) |
| 122 | 121 | nn0red | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℝ ) |
| 123 | 122 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℝ ) |
| 124 | 118 | zred | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑚 + 𝑢 ) ∈ ℝ ) |
| 125 | 121 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ0 ) |
| 126 | 125 | nn0zd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℤ ) |
| 127 | 87 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 − 𝑢 ) ∈ ℂ ) |
| 128 | 127 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑚 − 𝑢 ) ∈ ℂ ) |
| 129 | 80 81 | subeq0ad | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑚 − 𝑢 ) = 0 ↔ 𝑚 = 𝑢 ) ) |
| 130 | 129 | necon3bid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑚 − 𝑢 ) ≠ 0 ↔ 𝑚 ≠ 𝑢 ) ) |
| 131 | 130 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑚 − 𝑢 ) ≠ 0 ) |
| 132 | 128 131 | absrpcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℝ+ ) |
| 133 | 132 | rpgt0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 0 < ( abs ‘ ( 𝑚 − 𝑢 ) ) ) |
| 134 | elnnz | ⊢ ( ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ ↔ ( ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℤ ∧ 0 < ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) | |
| 135 | 126 133 134 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ ) |
| 136 | 135 | nnge1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 1 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) |
| 137 | 0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 0 ∈ ℂ ) | |
| 138 | 80 81 137 | abs3difd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ≤ ( ( abs ‘ ( 𝑚 − 0 ) ) + ( abs ‘ ( 0 − 𝑢 ) ) ) ) |
| 139 | 80 | subid1d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 − 0 ) = 𝑚 ) |
| 140 | 139 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 0 ) ) = ( abs ‘ 𝑚 ) ) |
| 141 | elfzle1 | ⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑚 ) | |
| 142 | 141 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 0 ≤ 𝑚 ) |
| 143 | 99 142 | absidd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ 𝑚 ) = 𝑚 ) |
| 144 | 140 143 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 0 ) ) = 𝑚 ) |
| 145 | 0cn | ⊢ 0 ∈ ℂ | |
| 146 | abssub | ⊢ ( ( 0 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑢 ) ) = ( abs ‘ ( 𝑢 − 0 ) ) ) | |
| 147 | 145 81 146 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 0 − 𝑢 ) ) = ( abs ‘ ( 𝑢 − 0 ) ) ) |
| 148 | 81 | subid1d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑢 − 0 ) = 𝑢 ) |
| 149 | 148 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑢 − 0 ) ) = ( abs ‘ 𝑢 ) ) |
| 150 | elfzle1 | ⊢ ( 𝑢 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝑢 ) | |
| 151 | 150 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → 0 ≤ 𝑢 ) |
| 152 | 100 151 | absidd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ 𝑢 ) = 𝑢 ) |
| 153 | 147 149 152 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 0 − 𝑢 ) ) = 𝑢 ) |
| 154 | 144 153 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( abs ‘ ( 𝑚 − 0 ) ) + ( abs ‘ ( 0 − 𝑢 ) ) ) = ( 𝑚 + 𝑢 ) ) |
| 155 | 138 154 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ≤ ( 𝑚 + 𝑢 ) ) |
| 156 | 155 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( abs ‘ ( 𝑚 − 𝑢 ) ) ≤ ( 𝑚 + 𝑢 ) ) |
| 157 | 119 123 124 136 156 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 1 ≤ ( 𝑚 + 𝑢 ) ) |
| 158 | elnnz1 | ⊢ ( ( 𝑚 + 𝑢 ) ∈ ℕ ↔ ( ( 𝑚 + 𝑢 ) ∈ ℤ ∧ 1 ≤ ( 𝑚 + 𝑢 ) ) ) | |
| 159 | 118 157 158 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑚 + 𝑢 ) ∈ ℕ ) |
| 160 | dvdsle | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑚 + 𝑢 ) ∈ ℕ ) → ( 𝑃 ∥ ( 𝑚 + 𝑢 ) → 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) | |
| 161 | 117 159 160 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑃 ∥ ( 𝑚 + 𝑢 ) → 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) |
| 162 | 116 161 | mtod | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ¬ 𝑃 ∥ ( 𝑚 + 𝑢 ) ) |
| 163 | 162 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ ( 𝑚 + 𝑢 ) ) ) |
| 164 | 163 | necon4ad | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( 𝑚 + 𝑢 ) → 𝑚 = 𝑢 ) ) |
| 165 | dvdsabsb | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑚 − 𝑢 ) ∈ ℤ ) → ( 𝑃 ∥ ( 𝑚 − 𝑢 ) ↔ 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) | |
| 166 | 97 87 165 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( 𝑚 − 𝑢 ) ↔ 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) |
| 167 | letr | ⊢ ( ( 𝑃 ∈ ℝ ∧ ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℝ ∧ ( 𝑚 + 𝑢 ) ∈ ℝ ) → ( ( 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ∧ ( abs ‘ ( 𝑚 − 𝑢 ) ) ≤ ( 𝑚 + 𝑢 ) ) → 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) | |
| 168 | 98 122 91 167 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ∧ ( abs ‘ ( 𝑚 − 𝑢 ) ) ≤ ( 𝑚 + 𝑢 ) ) → 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) |
| 169 | 155 168 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) → 𝑃 ≤ ( 𝑚 + 𝑢 ) ) ) |
| 170 | 115 169 | mtod | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ¬ 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) |
| 171 | 170 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ¬ 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) |
| 172 | 97 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → 𝑃 ∈ ℤ ) |
| 173 | dvdsle | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( abs ‘ ( 𝑚 − 𝑢 ) ) ∈ ℕ ) → ( 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) → 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) | |
| 174 | 172 135 173 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ( 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) → 𝑃 ≤ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) |
| 175 | 171 174 | mtod | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) ∧ 𝑚 ≠ 𝑢 ) → ¬ 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) |
| 176 | 175 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) ) ) |
| 177 | 176 | necon4ad | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( abs ‘ ( 𝑚 − 𝑢 ) ) → 𝑚 = 𝑢 ) ) |
| 178 | 166 177 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑃 ∥ ( 𝑚 − 𝑢 ) → 𝑚 = 𝑢 ) ) |
| 179 | 164 178 | jaod | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( 𝑃 ∥ ( 𝑚 + 𝑢 ) ∨ 𝑃 ∥ ( 𝑚 − 𝑢 ) ) → 𝑚 = 𝑢 ) ) |
| 180 | 90 179 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) → 𝑚 = 𝑢 ) ) |
| 181 | oveq1 | ⊢ ( 𝑚 = 𝑢 → ( 𝑚 ↑ 2 ) = ( 𝑢 ↑ 2 ) ) | |
| 182 | 181 | oveq1d | ⊢ ( 𝑚 = 𝑢 → ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ) |
| 183 | 180 182 | impbid1 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ↔ 𝑚 = 𝑢 ) ) |
| 184 | 183 | ex | ⊢ ( 𝜑 → ( ( 𝑚 ∈ ( 0 ... 𝑁 ) ∧ 𝑢 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑚 ↑ 2 ) mod 𝑃 ) = ( ( 𝑢 ↑ 2 ) mod 𝑃 ) ↔ 𝑚 = 𝑢 ) ) ) |
| 185 | 70 184 | dom2lem | ⊢ ( 𝜑 → ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 186 | f1f1orn | ⊢ ( ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1→ ( 0 ... ( 𝑃 − 1 ) ) → ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) ) | |
| 187 | 185 186 | syl | ⊢ ( 𝜑 → ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) ) |
| 188 | eqid | ⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) = ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) | |
| 189 | 188 | rnmpt | ⊢ ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) = { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } |
| 190 | 5 189 | eqtr4i | ⊢ 𝐴 = ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) |
| 191 | f1oeq3 | ⊢ ( 𝐴 = ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) → ( ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴 ↔ ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) ) ) | |
| 192 | 190 191 | ax-mp | ⊢ ( ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴 ↔ ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) ) |
| 193 | 187 192 | sylibr | ⊢ ( 𝜑 → ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴 ) |
| 194 | ovex | ⊢ ( 0 ... 𝑁 ) ∈ V | |
| 195 | 194 | f1oen | ⊢ ( ( 𝑚 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑚 ↑ 2 ) mod 𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴 → ( 0 ... 𝑁 ) ≈ 𝐴 ) |
| 196 | 193 195 | syl | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) ≈ 𝐴 ) |
| 197 | 196 | ensymd | ⊢ ( 𝜑 → 𝐴 ≈ ( 0 ... 𝑁 ) ) |
| 198 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 199 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 200 | 59 198 199 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 201 | 200 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 202 | 2 | nnnn0d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 203 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 204 | 202 203 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 205 | 204 | nn0zd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 206 | fz01en | ⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ≈ ( 1 ... ( 𝑁 + 1 ) ) ) | |
| 207 | 205 206 | syl | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ≈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 208 | 201 207 | eqbrtrrd | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) ≈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 209 | entr | ⊢ ( ( 𝐴 ≈ ( 0 ... 𝑁 ) ∧ ( 0 ... 𝑁 ) ≈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝐴 ≈ ( 1 ... ( 𝑁 + 1 ) ) ) | |
| 210 | 197 208 209 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 211 | 7 19 | ssfid | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 212 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) | |
| 213 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ↔ 𝐴 ≈ ( 1 ... ( 𝑁 + 1 ) ) ) ) | |
| 214 | 211 212 213 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ↔ 𝐴 ≈ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 215 | 210 214 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 216 | hashfz1 | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) | |
| 217 | 204 216 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
| 218 | 215 217 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( 𝑁 + 1 ) ) |
| 219 | 31 | ex | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐴 → ( ( 𝑃 − 1 ) − 𝑣 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) ) |
| 220 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑃 − 1 ) ∈ ℂ ) |
| 221 | fzssuz | ⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) | |
| 222 | uzssz | ⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ | |
| 223 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 224 | 222 223 | sstri | ⊢ ( ℤ≥ ‘ 0 ) ⊆ ℂ |
| 225 | 221 224 | sstri | ⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ℂ |
| 226 | 19 225 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 227 | 226 | sselda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ℂ ) |
| 228 | 227 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝑣 ∈ ℂ ) |
| 229 | 226 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℂ ) |
| 230 | 229 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ ℂ ) |
| 231 | 220 228 230 | subcanad | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ( 𝑃 − 1 ) − 𝑣 ) = ( ( 𝑃 − 1 ) − 𝑘 ) ↔ 𝑣 = 𝑘 ) ) |
| 232 | 231 | ex | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝑃 − 1 ) − 𝑣 ) = ( ( 𝑃 − 1 ) − 𝑘 ) ↔ 𝑣 = 𝑘 ) ) ) |
| 233 | 219 232 | dom2lem | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 234 | f1eq1 | ⊢ ( 𝐹 = ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) → ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ↔ ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ) ) | |
| 235 | 6 234 | ax-mp | ⊢ ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ↔ ( 𝑣 ∈ 𝐴 ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 236 | 233 235 | sylibr | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) ) |
| 237 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃 − 1 ) ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 238 | 236 237 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 239 | 211 238 | hasheqf1od | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝐹 ) ) |
| 240 | 239 218 | eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ ran 𝐹 ) = ( 𝑁 + 1 ) ) |
| 241 | 218 240 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ran 𝐹 ) ) = ( ( 𝑁 + 1 ) + ( 𝑁 + 1 ) ) ) |
| 242 | 61 69 241 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑃 + 1 ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ran 𝐹 ) ) ) |
| 243 | 242 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ( 𝑃 + 1 ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ran 𝐹 ) ) ) |
| 244 | 211 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → 𝐴 ∈ Fin ) |
| 245 | 7 33 | ssfid | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 246 | 245 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ran 𝐹 ∈ Fin ) |
| 247 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ( 𝐴 ∩ ran 𝐹 ) = ∅ ) | |
| 248 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ran 𝐹 ) ) ) | |
| 249 | 244 246 247 248 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ran 𝐹 ) ) ) |
| 250 | 243 249 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → ( 𝑃 + 1 ) = ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ) |
| 251 | 58 250 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∩ ran 𝐹 ) = ∅ ) → 𝑃 < ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ) |
| 252 | 251 | ex | ⊢ ( 𝜑 → ( ( 𝐴 ∩ ran 𝐹 ) = ∅ → 𝑃 < ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) ) ) |
| 253 | 252 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝑃 < ( ♯ ‘ ( 𝐴 ∪ ran 𝐹 ) ) → ( 𝐴 ∩ ran 𝐹 ) ≠ ∅ ) ) |
| 254 | 56 253 | mpd | ⊢ ( 𝜑 → ( 𝐴 ∩ ran 𝐹 ) ≠ ∅ ) |