This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Use the pigeonhole principle to show that the sets { m ^ 2 | m e. ( 0 ... N ) } and { -u 1 - n ^ 2 | n e. ( 0 ... N ) } have a common element, mod P . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sqlem11.5 | |- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
||
| 4sqlem11.6 | |- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
||
| Assertion | 4sqlem11 | |- ( ph -> ( A i^i ran F ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sqlem11.5 | |- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
|
| 6 | 4sqlem11.6 | |- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
|
| 7 | fzfid | |- ( ph -> ( 0 ... ( P - 1 ) ) e. Fin ) |
|
| 8 | elfzelz | |- ( m e. ( 0 ... N ) -> m e. ZZ ) |
|
| 9 | zsqcl | |- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( m e. ( 0 ... N ) -> ( m ^ 2 ) e. ZZ ) |
| 11 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 12 | 4 11 | syl | |- ( ph -> P e. NN ) |
| 13 | zmodfz | |- ( ( ( m ^ 2 ) e. ZZ /\ P e. NN ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
|
| 14 | 10 12 13 | syl2anr | |- ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 15 | eleq1a | |- ( ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ m e. ( 0 ... N ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
| 17 | 16 | rexlimdva | |- ( ph -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
| 18 | 17 | abssdv | |- ( ph -> { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } C_ ( 0 ... ( P - 1 ) ) ) |
| 19 | 5 18 | eqsstrid | |- ( ph -> A C_ ( 0 ... ( P - 1 ) ) ) |
| 20 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 21 | 4 20 | syl | |- ( ph -> P e. ZZ ) |
| 22 | peano2zm | |- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( P - 1 ) e. ZZ ) |
| 24 | 23 | zcnd | |- ( ph -> ( P - 1 ) e. CC ) |
| 25 | 24 | addlidd | |- ( ph -> ( 0 + ( P - 1 ) ) = ( P - 1 ) ) |
| 26 | 25 | oveq1d | |- ( ph -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
| 28 | 19 | sselda | |- ( ( ph /\ v e. A ) -> v e. ( 0 ... ( P - 1 ) ) ) |
| 29 | fzrev3i | |- ( v e. ( 0 ... ( P - 1 ) ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
| 31 | 27 30 | eqeltrrd | |- ( ( ph /\ v e. A ) -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
| 32 | 31 6 | fmptd | |- ( ph -> F : A --> ( 0 ... ( P - 1 ) ) ) |
| 33 | 32 | frnd | |- ( ph -> ran F C_ ( 0 ... ( P - 1 ) ) ) |
| 34 | 19 33 | unssd | |- ( ph -> ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) ) |
| 35 | 7 34 | ssfid | |- ( ph -> ( A u. ran F ) e. Fin ) |
| 36 | hashcl | |- ( ( A u. ran F ) e. Fin -> ( # ` ( A u. ran F ) ) e. NN0 ) |
|
| 37 | 35 36 | syl | |- ( ph -> ( # ` ( A u. ran F ) ) e. NN0 ) |
| 38 | 37 | nn0red | |- ( ph -> ( # ` ( A u. ran F ) ) e. RR ) |
| 39 | 21 | zred | |- ( ph -> P e. RR ) |
| 40 | ssdomg | |- ( ( 0 ... ( P - 1 ) ) e. Fin -> ( ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
|
| 41 | 7 34 40 | sylc | |- ( ph -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) |
| 42 | hashdom | |- ( ( ( A u. ran F ) e. Fin /\ ( 0 ... ( P - 1 ) ) e. Fin ) -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
|
| 43 | 35 7 42 | syl2anc | |- ( ph -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
| 44 | 41 43 | mpbird | |- ( ph -> ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) ) |
| 45 | fz01en | |- ( P e. ZZ -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
|
| 46 | 21 45 | syl | |- ( ph -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
| 47 | fzfid | |- ( ph -> ( 1 ... P ) e. Fin ) |
|
| 48 | hashen | |- ( ( ( 0 ... ( P - 1 ) ) e. Fin /\ ( 1 ... P ) e. Fin ) -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
|
| 49 | 7 47 48 | syl2anc | |- ( ph -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
| 50 | 46 49 | mpbird | |- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) ) |
| 51 | 12 | nnnn0d | |- ( ph -> P e. NN0 ) |
| 52 | hashfz1 | |- ( P e. NN0 -> ( # ` ( 1 ... P ) ) = P ) |
|
| 53 | 51 52 | syl | |- ( ph -> ( # ` ( 1 ... P ) ) = P ) |
| 54 | 50 53 | eqtrd | |- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = P ) |
| 55 | 44 54 | breqtrd | |- ( ph -> ( # ` ( A u. ran F ) ) <_ P ) |
| 56 | 38 39 55 | lensymd | |- ( ph -> -. P < ( # ` ( A u. ran F ) ) ) |
| 57 | 39 | adantr | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P e. RR ) |
| 58 | 57 | ltp1d | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( P + 1 ) ) |
| 59 | 2 | nncnd | |- ( ph -> N e. CC ) |
| 60 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 61 | 59 59 60 60 | add4d | |- ( ph -> ( ( N + N ) + ( 1 + 1 ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
| 62 | 3 | oveq1d | |- ( ph -> ( P + 1 ) = ( ( ( 2 x. N ) + 1 ) + 1 ) ) |
| 63 | 2cn | |- 2 e. CC |
|
| 64 | mulcl | |- ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) |
|
| 65 | 63 59 64 | sylancr | |- ( ph -> ( 2 x. N ) e. CC ) |
| 66 | 65 60 60 | addassd | |- ( ph -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) |
| 67 | 59 | 2timesd | |- ( ph -> ( 2 x. N ) = ( N + N ) ) |
| 68 | 67 | oveq1d | |- ( ph -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
| 69 | 62 66 68 | 3eqtrd | |- ( ph -> ( P + 1 ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
| 70 | 14 | ex | |- ( ph -> ( m e. ( 0 ... N ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) ) |
| 71 | 12 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. NN ) |
| 72 | 8 | ad2antrl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. ZZ ) |
| 73 | 72 9 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m ^ 2 ) e. ZZ ) |
| 74 | elfzelz | |- ( u e. ( 0 ... N ) -> u e. ZZ ) |
|
| 75 | 74 | ad2antll | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. ZZ ) |
| 76 | zsqcl | |- ( u e. ZZ -> ( u ^ 2 ) e. ZZ ) |
|
| 77 | 75 76 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u ^ 2 ) e. ZZ ) |
| 78 | moddvds | |- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( u ^ 2 ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
|
| 79 | 71 73 77 78 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
| 80 | 72 | zcnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. CC ) |
| 81 | 75 | zcnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. CC ) |
| 82 | subsq | |- ( ( m e. CC /\ u e. CC ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
|
| 83 | 80 81 82 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
| 84 | 83 | breq2d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m ^ 2 ) - ( u ^ 2 ) ) <-> P || ( ( m + u ) x. ( m - u ) ) ) ) |
| 85 | 4 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. Prime ) |
| 86 | 72 75 | zaddcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. ZZ ) |
| 87 | 72 75 | zsubcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. ZZ ) |
| 88 | euclemma | |- ( ( P e. Prime /\ ( m + u ) e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
|
| 89 | 85 86 87 88 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
| 90 | 79 84 89 | 3bitrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
| 91 | 86 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. RR ) |
| 92 | 2re | |- 2 e. RR |
|
| 93 | 2 | nnred | |- ( ph -> N e. RR ) |
| 94 | remulcl | |- ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) |
|
| 95 | 92 93 94 | sylancr | |- ( ph -> ( 2 x. N ) e. RR ) |
| 96 | 95 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) e. RR ) |
| 97 | 85 20 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. ZZ ) |
| 98 | 97 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. RR ) |
| 99 | 72 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. RR ) |
| 100 | 75 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. RR ) |
| 101 | 93 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. RR ) |
| 102 | elfzle2 | |- ( m e. ( 0 ... N ) -> m <_ N ) |
|
| 103 | 102 | ad2antrl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m <_ N ) |
| 104 | elfzle2 | |- ( u e. ( 0 ... N ) -> u <_ N ) |
|
| 105 | 104 | ad2antll | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u <_ N ) |
| 106 | 99 100 101 101 103 105 | le2addd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( N + N ) ) |
| 107 | 59 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. CC ) |
| 108 | 107 | 2timesd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) = ( N + N ) ) |
| 109 | 106 108 | breqtrrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( 2 x. N ) ) |
| 110 | 95 | ltp1d | |- ( ph -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) |
| 111 | 110 3 | breqtrrd | |- ( ph -> ( 2 x. N ) < P ) |
| 112 | 111 | adantr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) < P ) |
| 113 | 91 96 98 109 112 | lelttrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) < P ) |
| 114 | 91 98 | ltnled | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m + u ) < P <-> -. P <_ ( m + u ) ) ) |
| 115 | 113 114 | mpbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( m + u ) ) |
| 116 | 115 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( m + u ) ) |
| 117 | 21 | ad2antrr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
| 118 | 86 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. ZZ ) |
| 119 | 1red | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 e. RR ) |
|
| 120 | nn0abscl | |- ( ( m - u ) e. ZZ -> ( abs ` ( m - u ) ) e. NN0 ) |
|
| 121 | 87 120 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. NN0 ) |
| 122 | 121 | nn0red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. RR ) |
| 123 | 122 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR ) |
| 124 | 118 | zred | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. RR ) |
| 125 | 121 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN0 ) |
| 126 | 125 | nn0zd | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. ZZ ) |
| 127 | 87 | zcnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. CC ) |
| 128 | 127 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) e. CC ) |
| 129 | 80 81 | subeq0ad | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) = 0 <-> m = u ) ) |
| 130 | 129 | necon3bid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) =/= 0 <-> m =/= u ) ) |
| 131 | 130 | biimpar | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) =/= 0 ) |
| 132 | 128 131 | absrpcld | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR+ ) |
| 133 | 132 | rpgt0d | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 0 < ( abs ` ( m - u ) ) ) |
| 134 | elnnz | |- ( ( abs ` ( m - u ) ) e. NN <-> ( ( abs ` ( m - u ) ) e. ZZ /\ 0 < ( abs ` ( m - u ) ) ) ) |
|
| 135 | 126 133 134 | sylanbrc | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN ) |
| 136 | 135 | nnge1d | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( abs ` ( m - u ) ) ) |
| 137 | 0cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 e. CC ) |
|
| 138 | 80 81 137 | abs3difd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) ) |
| 139 | 80 | subid1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - 0 ) = m ) |
| 140 | 139 | fveq2d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = ( abs ` m ) ) |
| 141 | elfzle1 | |- ( m e. ( 0 ... N ) -> 0 <_ m ) |
|
| 142 | 141 | ad2antrl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ m ) |
| 143 | 99 142 | absidd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` m ) = m ) |
| 144 | 140 143 | eqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = m ) |
| 145 | 0cn | |- 0 e. CC |
|
| 146 | abssub | |- ( ( 0 e. CC /\ u e. CC ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
|
| 147 | 145 81 146 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
| 148 | 81 | subid1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u - 0 ) = u ) |
| 149 | 148 | fveq2d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( u - 0 ) ) = ( abs ` u ) ) |
| 150 | elfzle1 | |- ( u e. ( 0 ... N ) -> 0 <_ u ) |
|
| 151 | 150 | ad2antll | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ u ) |
| 152 | 100 151 | absidd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` u ) = u ) |
| 153 | 147 149 152 | 3eqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = u ) |
| 154 | 144 153 | oveq12d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) = ( m + u ) ) |
| 155 | 138 154 | breqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
| 156 | 155 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
| 157 | 119 123 124 136 156 | letrd | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( m + u ) ) |
| 158 | elnnz1 | |- ( ( m + u ) e. NN <-> ( ( m + u ) e. ZZ /\ 1 <_ ( m + u ) ) ) |
|
| 159 | 118 157 158 | sylanbrc | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. NN ) |
| 160 | dvdsle | |- ( ( P e. ZZ /\ ( m + u ) e. NN ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
|
| 161 | 117 159 160 | syl2anc | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
| 162 | 116 161 | mtod | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( m + u ) ) |
| 163 | 162 | ex | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( m + u ) ) ) |
| 164 | 163 | necon4ad | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m + u ) -> m = u ) ) |
| 165 | dvdsabsb | |- ( ( P e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
|
| 166 | 97 87 165 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
| 167 | letr | |- ( ( P e. RR /\ ( abs ` ( m - u ) ) e. RR /\ ( m + u ) e. RR ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
|
| 168 | 98 122 91 167 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
| 169 | 155 168 | mpan2d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P <_ ( abs ` ( m - u ) ) -> P <_ ( m + u ) ) ) |
| 170 | 115 169 | mtod | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( abs ` ( m - u ) ) ) |
| 171 | 170 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( abs ` ( m - u ) ) ) |
| 172 | 97 | adantr | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
| 173 | dvdsle | |- ( ( P e. ZZ /\ ( abs ` ( m - u ) ) e. NN ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
|
| 174 | 172 135 173 | syl2anc | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
| 175 | 171 174 | mtod | |- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( abs ` ( m - u ) ) ) |
| 176 | 175 | ex | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( abs ` ( m - u ) ) ) ) |
| 177 | 176 | necon4ad | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( abs ` ( m - u ) ) -> m = u ) ) |
| 178 | 166 177 | sylbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) -> m = u ) ) |
| 179 | 164 178 | jaod | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P || ( m + u ) \/ P || ( m - u ) ) -> m = u ) ) |
| 180 | 90 179 | sylbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) -> m = u ) ) |
| 181 | oveq1 | |- ( m = u -> ( m ^ 2 ) = ( u ^ 2 ) ) |
|
| 182 | 181 | oveq1d | |- ( m = u -> ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) ) |
| 183 | 180 182 | impbid1 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) |
| 184 | 183 | ex | |- ( ph -> ( ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) ) |
| 185 | 70 184 | dom2lem | |- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 186 | f1f1orn | |- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
|
| 187 | 185 186 | syl | |- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
| 188 | eqid | |- ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
|
| 189 | 188 | rnmpt | |- ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
| 190 | 5 189 | eqtr4i | |- A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
| 191 | f1oeq3 | |- ( A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) -> ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) ) |
|
| 192 | 190 191 | ax-mp | |- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
| 193 | 187 192 | sylibr | |- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A ) |
| 194 | ovex | |- ( 0 ... N ) e. _V |
|
| 195 | 194 | f1oen | |- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A -> ( 0 ... N ) ~~ A ) |
| 196 | 193 195 | syl | |- ( ph -> ( 0 ... N ) ~~ A ) |
| 197 | 196 | ensymd | |- ( ph -> A ~~ ( 0 ... N ) ) |
| 198 | ax-1cn | |- 1 e. CC |
|
| 199 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 200 | 59 198 199 | sylancl | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 201 | 200 | oveq2d | |- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 202 | 2 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 203 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 204 | 202 203 | syl | |- ( ph -> ( N + 1 ) e. NN0 ) |
| 205 | 204 | nn0zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 206 | fz01en | |- ( ( N + 1 ) e. ZZ -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
|
| 207 | 205 206 | syl | |- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
| 208 | 201 207 | eqbrtrrd | |- ( ph -> ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) |
| 209 | entr | |- ( ( A ~~ ( 0 ... N ) /\ ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) -> A ~~ ( 1 ... ( N + 1 ) ) ) |
|
| 210 | 197 208 209 | syl2anc | |- ( ph -> A ~~ ( 1 ... ( N + 1 ) ) ) |
| 211 | 7 19 | ssfid | |- ( ph -> A e. Fin ) |
| 212 | fzfid | |- ( ph -> ( 1 ... ( N + 1 ) ) e. Fin ) |
|
| 213 | hashen | |- ( ( A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
|
| 214 | 211 212 213 | syl2anc | |- ( ph -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
| 215 | 210 214 | mpbird | |- ( ph -> ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) ) |
| 216 | hashfz1 | |- ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
|
| 217 | 204 216 | syl | |- ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
| 218 | 215 217 | eqtrd | |- ( ph -> ( # ` A ) = ( N + 1 ) ) |
| 219 | 31 | ex | |- ( ph -> ( v e. A -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) ) |
| 220 | 24 | adantr | |- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( P - 1 ) e. CC ) |
| 221 | fzssuz | |- ( 0 ... ( P - 1 ) ) C_ ( ZZ>= ` 0 ) |
|
| 222 | uzssz | |- ( ZZ>= ` 0 ) C_ ZZ |
|
| 223 | zsscn | |- ZZ C_ CC |
|
| 224 | 222 223 | sstri | |- ( ZZ>= ` 0 ) C_ CC |
| 225 | 221 224 | sstri | |- ( 0 ... ( P - 1 ) ) C_ CC |
| 226 | 19 225 | sstrdi | |- ( ph -> A C_ CC ) |
| 227 | 226 | sselda | |- ( ( ph /\ v e. A ) -> v e. CC ) |
| 228 | 227 | adantrr | |- ( ( ph /\ ( v e. A /\ k e. A ) ) -> v e. CC ) |
| 229 | 226 | sselda | |- ( ( ph /\ k e. A ) -> k e. CC ) |
| 230 | 229 | adantrl | |- ( ( ph /\ ( v e. A /\ k e. A ) ) -> k e. CC ) |
| 231 | 220 228 230 | subcanad | |- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) |
| 232 | 231 | ex | |- ( ph -> ( ( v e. A /\ k e. A ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) ) |
| 233 | 219 232 | dom2lem | |- ( ph -> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 234 | f1eq1 | |- ( F = ( v e. A |-> ( ( P - 1 ) - v ) ) -> ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) ) |
|
| 235 | 6 234 | ax-mp | |- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 236 | 233 235 | sylibr | |- ( ph -> F : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
| 237 | f1f1orn | |- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) -> F : A -1-1-onto-> ran F ) |
|
| 238 | 236 237 | syl | |- ( ph -> F : A -1-1-onto-> ran F ) |
| 239 | 211 238 | hasheqf1od | |- ( ph -> ( # ` A ) = ( # ` ran F ) ) |
| 240 | 239 218 | eqtr3d | |- ( ph -> ( # ` ran F ) = ( N + 1 ) ) |
| 241 | 218 240 | oveq12d | |- ( ph -> ( ( # ` A ) + ( # ` ran F ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
| 242 | 61 69 241 | 3eqtr4d | |- ( ph -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 243 | 242 | adantr | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 244 | 211 | adantr | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> A e. Fin ) |
| 245 | 7 33 | ssfid | |- ( ph -> ran F e. Fin ) |
| 246 | 245 | adantr | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ran F e. Fin ) |
| 247 | simpr | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( A i^i ran F ) = (/) ) |
|
| 248 | hashun | |- ( ( A e. Fin /\ ran F e. Fin /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
|
| 249 | 244 246 247 248 | syl3anc | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
| 250 | 243 249 | eqtr4d | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( # ` ( A u. ran F ) ) ) |
| 251 | 58 250 | breqtrd | |- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( # ` ( A u. ran F ) ) ) |
| 252 | 251 | ex | |- ( ph -> ( ( A i^i ran F ) = (/) -> P < ( # ` ( A u. ran F ) ) ) ) |
| 253 | 252 | necon3bd | |- ( ph -> ( -. P < ( # ` ( A u. ran F ) ) -> ( A i^i ran F ) =/= (/) ) ) |
| 254 | 56 253 | mpd | |- ( ph -> ( A i^i ran F ) =/= (/) ) |