This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz01en | ⊢ ( 𝑁 ∈ ℤ → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( 1 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | fzen | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 5 | 2 3 4 | mp3an13 | ⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 6 | 1 5 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 7 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 0 + 1 ) = 1 ) |
| 9 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 13 | 8 12 | oveq12d | ⊢ ( 𝑁 ∈ ℤ → ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
| 14 | 6 13 | breqtrd | ⊢ ( 𝑁 ∈ ℤ → ( 0 ... ( 𝑁 − 1 ) ) ≈ ( 1 ... 𝑁 ) ) |