This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer mod B lies in the first B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodfz | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ℤ ) |
| 3 | 1 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
| 4 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 5 | nnrp | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) | |
| 6 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 11 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) | |
| 12 | 8 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) |
| 13 | 2 3 7 12 | mpbir3and | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ... ( 𝐵 − 1 ) ) ) |