This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in ApostolNT p. 17. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euclemma | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑀 ↔ ( 𝑃 gcd 𝑀 ) = 1 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑀 ↔ ( 𝑃 gcd 𝑀 ) = 1 ) ) |
| 3 | 2 | anbi2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ¬ 𝑃 ∥ 𝑀 ) ↔ ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) ) ) |
| 4 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 5 | coprmdvds | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) → 𝑃 ∥ 𝑁 ) ) | |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) → 𝑃 ∥ 𝑁 ) ) |
| 7 | 3 6 | sylbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ¬ 𝑃 ∥ 𝑀 ) → 𝑃 ∥ 𝑁 ) ) |
| 8 | 7 | expd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) → ( ¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁 ) ) ) |
| 9 | df-or | ⊢ ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ↔ ( ¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁 ) ) | |
| 10 | 8 9 | imbitrrdi | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) → ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ) ) |
| 11 | ordvdsmul | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 12 | 4 11 | syl3an1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 13 | 10 12 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ) ) |