This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscph.v | |- V = ( Base ` W ) |
|
| iscph.h | |- ., = ( .i ` W ) |
||
| iscph.n | |- N = ( norm ` W ) |
||
| iscph.f | |- F = ( Scalar ` W ) |
||
| iscph.k | |- K = ( Base ` F ) |
||
| Assertion | iscph | |- ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscph.v | |- V = ( Base ` W ) |
|
| 2 | iscph.h | |- ., = ( .i ` W ) |
|
| 3 | iscph.n | |- N = ( norm ` W ) |
|
| 4 | iscph.f | |- F = ( Scalar ` W ) |
|
| 5 | iscph.k | |- K = ( Base ` F ) |
|
| 6 | elin | |- ( W e. ( PreHil i^i NrmMod ) <-> ( W e. PreHil /\ W e. NrmMod ) ) |
|
| 7 | 6 | anbi1i | |- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
| 8 | df-3an | |- ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) <-> ( ( W e. PreHil /\ W e. NrmMod ) /\ F = ( CCfld |`s K ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) <-> ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) ) |
| 10 | 9 | anbi1i | |- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 11 | fvexd | |- ( w = W -> ( Scalar ` w ) e. _V ) |
|
| 12 | fvexd | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) |
|
| 13 | simplr | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = ( Scalar ` w ) ) |
|
| 14 | simpll | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> w = W ) |
|
| 15 | 14 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 16 | 15 4 | eqtr4di | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Scalar ` w ) = F ) |
| 17 | 13 16 | eqtrd | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) |
| 18 | simpr | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = ( Base ` f ) ) |
|
| 19 | 17 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = ( Base ` F ) ) |
| 20 | 19 5 | eqtr4di | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` f ) = K ) |
| 21 | 18 20 | eqtrd | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) |
| 22 | 21 | oveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) |
| 23 | 17 22 | eqeq12d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) |
| 24 | 21 | ineq1d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k i^i ( 0 [,) +oo ) ) = ( K i^i ( 0 [,) +oo ) ) ) |
| 25 | 24 | imaeq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) |
| 26 | 25 21 | sseq12d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k <-> ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K ) ) |
| 27 | 14 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = ( norm ` W ) ) |
| 28 | 27 3 | eqtr4di | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( norm ` w ) = N ) |
| 29 | 14 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = ( Base ` W ) ) |
| 30 | 29 1 | eqtr4di | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( Base ` w ) = V ) |
| 31 | 14 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ( .i ` W ) ) |
| 32 | 31 2 | eqtr4di | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( .i ` w ) = ., ) |
| 33 | 32 | oveqd | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x ( .i ` w ) x ) = ( x ., x ) ) |
| 34 | 33 | fveq2d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( sqrt ` ( x ( .i ` w ) x ) ) = ( sqrt ` ( x ., x ) ) ) |
| 35 | 30 34 | mpteq12dv | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 36 | 28 35 | eqeq12d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) <-> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| 37 | 23 26 36 | 3anbi123d | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 38 | 3anass | |- ( ( F = ( CCfld |`s K ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
|
| 39 | 37 38 | bitrdi | |- ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 40 | 12 39 | sbcied | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 41 | 11 40 | sbcied | |- ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) <-> ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 42 | df-cph | |- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
|
| 43 | 41 42 | elrab2 | |- ( W e. CPreHil <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
| 44 | anass | |- ( ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) <-> ( W e. ( PreHil i^i NrmMod ) /\ ( F = ( CCfld |`s K ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) ) |
|
| 45 | 43 44 | bitr4i | |- ( W e. CPreHil <-> ( ( W e. ( PreHil i^i NrmMod ) /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
| 46 | 3anass | |- ( ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) ) |
|
| 47 | 10 45 46 | 3bitr4i | |- ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |