This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphcph.v | |- V = ( Base ` W ) |
||
| tcphcph.f | |- F = ( Scalar ` W ) |
||
| tcphcph.1 | |- ( ph -> W e. PreHil ) |
||
| tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
||
| tcphcph.h | |- ., = ( .i ` W ) |
||
| Assertion | tcphcphlem3 | |- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphcph.v | |- V = ( Base ` W ) |
|
| 3 | tcphcph.f | |- F = ( Scalar ` W ) |
|
| 4 | tcphcph.1 | |- ( ph -> W e. PreHil ) |
|
| 5 | tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
|
| 6 | tcphcph.h | |- ., = ( .i ` W ) |
|
| 7 | 1 2 3 4 5 | phclm | |- ( ph -> W e. CMod ) |
| 8 | 7 | adantr | |- ( ( ph /\ X e. V ) -> W e. CMod ) |
| 9 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 10 | 3 9 | clmsscn | |- ( W e. CMod -> ( Base ` F ) C_ CC ) |
| 11 | 8 10 | syl | |- ( ( ph /\ X e. V ) -> ( Base ` F ) C_ CC ) |
| 12 | 3 6 2 9 | ipcl | |- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 13 | 12 | 3anidm23 | |- ( ( W e. PreHil /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 14 | 4 13 | sylan | |- ( ( ph /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 15 | 11 14 | sseldd | |- ( ( ph /\ X e. V ) -> ( X ., X ) e. CC ) |
| 16 | 3 | clmcj | |- ( W e. CMod -> * = ( *r ` F ) ) |
| 17 | 8 16 | syl | |- ( ( ph /\ X e. V ) -> * = ( *r ` F ) ) |
| 18 | 17 | fveq1d | |- ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( ( *r ` F ) ` ( X ., X ) ) ) |
| 19 | 4 | adantr | |- ( ( ph /\ X e. V ) -> W e. PreHil ) |
| 20 | simpr | |- ( ( ph /\ X e. V ) -> X e. V ) |
|
| 21 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 22 | 3 6 2 21 | ipcj | |- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) |
| 23 | 19 20 20 22 | syl3anc | |- ( ( ph /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) |
| 24 | 18 23 | eqtrd | |- ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( X ., X ) ) |
| 25 | 15 24 | cjrebd | |- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |