This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngnm.t | |- T = ( G toNrmGrp N ) |
|
| tngnm.x | |- X = ( Base ` G ) |
||
| tngnm.a | |- A e. _V |
||
| Assertion | tngnm | |- ( ( G e. Grp /\ N : X --> A ) -> N = ( norm ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnm.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngnm.x | |- X = ( Base ` G ) |
|
| 3 | tngnm.a | |- A e. _V |
|
| 4 | simpr | |- ( ( G e. Grp /\ N : X --> A ) -> N : X --> A ) |
|
| 5 | 4 | feqmptd | |- ( ( G e. Grp /\ N : X --> A ) -> N = ( x e. X |-> ( N ` x ) ) ) |
| 6 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 7 | 2 6 | grpsubf | |- ( G e. Grp -> ( -g ` G ) : ( X X. X ) --> X ) |
| 8 | 7 | ad2antrr | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( -g ` G ) : ( X X. X ) --> X ) |
| 9 | simpr | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> x e. X ) |
|
| 10 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 11 | 2 10 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 12 | 11 | ad2antrr | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( 0g ` G ) e. X ) |
| 13 | 9 12 | opelxpd | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> <. x , ( 0g ` G ) >. e. ( X X. X ) ) |
| 14 | fvco3 | |- ( ( ( -g ` G ) : ( X X. X ) --> X /\ <. x , ( 0g ` G ) >. e. ( X X. X ) ) -> ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) ) |
|
| 15 | 8 13 14 | syl2anc | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) ) |
| 16 | df-ov | |- ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) |
|
| 17 | df-ov | |- ( x ( -g ` G ) ( 0g ` G ) ) = ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) |
|
| 18 | 17 | fveq2i | |- ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) |
| 19 | 15 16 18 | 3eqtr4g | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) ) |
| 20 | 2 10 6 | grpsubid1 | |- ( ( G e. Grp /\ x e. X ) -> ( x ( -g ` G ) ( 0g ` G ) ) = x ) |
| 21 | 20 | adantlr | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( x ( -g ` G ) ( 0g ` G ) ) = x ) |
| 22 | 21 | fveq2d | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) = ( N ` x ) ) |
| 23 | 19 22 | eqtr2d | |- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( N ` x ) = ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) |
| 24 | 23 | mpteq2dva | |- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( N ` x ) ) = ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) ) |
| 25 | 2 | fvexi | |- X e. _V |
| 26 | fex2 | |- ( ( N : X --> A /\ X e. _V /\ A e. _V ) -> N e. _V ) |
|
| 27 | 25 3 26 | mp3an23 | |- ( N : X --> A -> N e. _V ) |
| 28 | 27 | adantl | |- ( ( G e. Grp /\ N : X --> A ) -> N e. _V ) |
| 29 | 1 2 | tngbas | |- ( N e. _V -> X = ( Base ` T ) ) |
| 30 | 28 29 | syl | |- ( ( G e. Grp /\ N : X --> A ) -> X = ( Base ` T ) ) |
| 31 | 1 6 | tngds | |- ( N e. _V -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 32 | 28 31 | syl | |- ( ( G e. Grp /\ N : X --> A ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 33 | eqidd | |- ( ( G e. Grp /\ N : X --> A ) -> x = x ) |
|
| 34 | 1 10 | tng0 | |- ( N e. _V -> ( 0g ` G ) = ( 0g ` T ) ) |
| 35 | 28 34 | syl | |- ( ( G e. Grp /\ N : X --> A ) -> ( 0g ` G ) = ( 0g ` T ) ) |
| 36 | 32 33 35 | oveq123d | |- ( ( G e. Grp /\ N : X --> A ) -> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( x ( dist ` T ) ( 0g ` T ) ) ) |
| 37 | 30 36 | mpteq12dv | |- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) = ( x e. ( Base ` T ) |-> ( x ( dist ` T ) ( 0g ` T ) ) ) ) |
| 38 | eqid | |- ( norm ` T ) = ( norm ` T ) |
|
| 39 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 40 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 41 | eqid | |- ( dist ` T ) = ( dist ` T ) |
|
| 42 | 38 39 40 41 | nmfval | |- ( norm ` T ) = ( x e. ( Base ` T ) |-> ( x ( dist ` T ) ( 0g ` T ) ) ) |
| 43 | 37 42 | eqtr4di | |- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) = ( norm ` T ) ) |
| 44 | 5 24 43 | 3eqtrd | |- ( ( G e. Grp /\ N : X --> A ) -> N = ( norm ` T ) ) |