This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of Kreyszig p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcau.v | |- V = ( Base ` W ) |
|
| ipcau.h | |- ., = ( .i ` W ) |
||
| ipcau.n | |- N = ( norm ` W ) |
||
| Assertion | ipcau | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcau.v | |- V = ( Base ` W ) |
|
| 2 | ipcau.h | |- ., = ( .i ` W ) |
|
| 3 | ipcau.n | |- N = ( norm ` W ) |
|
| 4 | eqid | |- ( toCPreHil ` W ) = ( toCPreHil ` W ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | simp1 | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. CPreHil ) |
|
| 7 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 8 | 6 7 | syl | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. PreHil ) |
| 9 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 10 | 5 9 | cphsca | |- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
| 11 | 6 10 | syl | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
| 12 | 5 9 | cphsqrtcl | |- ( ( W e. CPreHil /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) |
| 13 | 6 12 | sylan | |- ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) |
| 14 | 1 2 | ipge0 | |- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 15 | 6 14 | sylan | |- ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 16 | eqid | |- ( norm ` ( toCPreHil ` W ) ) = ( norm ` ( toCPreHil ` W ) ) |
|
| 17 | eqid | |- ( ( Y ., X ) / ( Y ., Y ) ) = ( ( Y ., X ) / ( Y ., Y ) ) |
|
| 18 | simp2 | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> X e. V ) |
|
| 19 | simp3 | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> Y e. V ) |
|
| 20 | 4 1 5 8 11 2 13 15 9 16 17 18 19 | ipcau2 | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) |
| 21 | 4 3 | cphtcphnm | |- ( W e. CPreHil -> N = ( norm ` ( toCPreHil ` W ) ) ) |
| 22 | 6 21 | syl | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> N = ( norm ` ( toCPreHil ` W ) ) ) |
| 23 | 22 | fveq1d | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` X ) = ( ( norm ` ( toCPreHil ` W ) ) ` X ) ) |
| 24 | 22 | fveq1d | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` Y ) = ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) |
| 25 | 23 24 | oveq12d | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( ( N ` X ) x. ( N ` Y ) ) = ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) |
| 26 | 20 25 | breqtrrd | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |