This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipcl.f | |- K = ( Base ` F ) |
||
| Assertion | ipcl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipcl.f | |- K = ( Base ` F ) |
|
| 5 | eqid | |- ( x e. V |-> ( x ., B ) ) = ( x e. V |-> ( x ., B ) ) |
|
| 6 | 1 2 3 5 | phllmhm | |- ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 7 | rlmbas | |- ( Base ` F ) = ( Base ` ( ringLMod ` F ) ) |
|
| 8 | 4 7 | eqtri | |- K = ( Base ` ( ringLMod ` F ) ) |
| 9 | 3 8 | lmhmf | |- ( ( x e. V |-> ( x ., B ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) |
| 10 | 6 9 | syl | |- ( ( W e. PreHil /\ B e. V ) -> ( x e. V |-> ( x ., B ) ) : V --> K ) |
| 11 | 5 | fmpt | |- ( A. x e. V ( x ., B ) e. K <-> ( x e. V |-> ( x ., B ) ) : V --> K ) |
| 12 | 10 11 | sylibr | |- ( ( W e. PreHil /\ B e. V ) -> A. x e. V ( x ., B ) e. K ) |
| 13 | oveq1 | |- ( x = A -> ( x ., B ) = ( A ., B ) ) |
|
| 14 | 13 | eleq1d | |- ( x = A -> ( ( x ., B ) e. K <-> ( A ., B ) e. K ) ) |
| 15 | 14 | rspccva | |- ( ( A. x e. V ( x ., B ) e. K /\ A e. V ) -> ( A ., B ) e. K ) |
| 16 | 12 15 | stoic3 | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( A ., B ) e. K ) |
| 17 | 16 | 3com23 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |