This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphcph.v | |- V = ( Base ` W ) |
||
| tcphcph.f | |- F = ( Scalar ` W ) |
||
| tcphcph.1 | |- ( ph -> W e. PreHil ) |
||
| tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
||
| Assertion | phclm | |- ( ph -> W e. CMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphcph.v | |- V = ( Base ` W ) |
|
| 3 | tcphcph.f | |- F = ( Scalar ` W ) |
|
| 4 | tcphcph.1 | |- ( ph -> W e. PreHil ) |
|
| 5 | tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
|
| 6 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 7 | 4 6 | syl | |- ( ph -> W e. LMod ) |
| 8 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 9 | phllvec | |- ( W e. PreHil -> W e. LVec ) |
|
| 10 | 4 9 | syl | |- ( ph -> W e. LVec ) |
| 11 | 3 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 12 | 10 11 | syl | |- ( ph -> F e. DivRing ) |
| 13 | 8 5 12 | cphsubrglem | |- ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
| 14 | 13 | simp1d | |- ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 15 | 13 | simp3d | |- ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 16 | 3 8 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
| 17 | 7 14 15 16 | syl3anbrc | |- ( ph -> W e. CMod ) |