This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphval.v | |- V = ( Base ` W ) |
||
| tcphval.h | |- ., = ( .i ` W ) |
||
| Assertion | tcphval | |- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphval.v | |- V = ( Base ` W ) |
|
| 3 | tcphval.h | |- ., = ( .i ` W ) |
|
| 4 | id | |- ( w = W -> w = W ) |
|
| 5 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( w = W -> ( Base ` w ) = V ) |
| 7 | fveq2 | |- ( w = W -> ( .i ` w ) = ( .i ` W ) ) |
|
| 8 | 7 3 | eqtr4di | |- ( w = W -> ( .i ` w ) = ., ) |
| 9 | 8 | oveqd | |- ( w = W -> ( x ( .i ` w ) x ) = ( x ., x ) ) |
| 10 | 9 | fveq2d | |- ( w = W -> ( sqrt ` ( x ( .i ` w ) x ) ) = ( sqrt ` ( x ., x ) ) ) |
| 11 | 6 10 | mpteq12dv | |- ( w = W -> ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 12 | 4 11 | oveq12d | |- ( w = W -> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| 13 | df-tcph | |- toCPreHil = ( w e. _V |-> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) ) |
|
| 14 | ovex | |- ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) e. _V |
|
| 15 | 12 13 14 | fvmpt | |- ( W e. _V -> ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| 16 | fvprc | |- ( -. W e. _V -> ( toCPreHil ` W ) = (/) ) |
|
| 17 | reldmtng | |- Rel dom toNrmGrp |
|
| 18 | 17 | ovprc1 | |- ( -. W e. _V -> ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) = (/) ) |
| 19 | 16 18 | eqtr4d | |- ( -. W e. _V -> ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) ) |
| 20 | 15 19 | pm2.61i | |- ( toCPreHil ` W ) = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 21 | 1 20 | eqtri | |- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |