This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| Assertion | tcphphl | |- ( W e. PreHil <-> G e. PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | eqidd | |- ( T. -> ( Base ` W ) = ( Base ` W ) ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 1 3 | tcphbas | |- ( Base ` W ) = ( Base ` G ) |
| 5 | 4 | a1i | |- ( T. -> ( Base ` W ) = ( Base ` G ) ) |
| 6 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 7 | 1 6 | tchplusg | |- ( +g ` W ) = ( +g ` G ) |
| 8 | 7 | a1i | |- ( T. -> ( +g ` W ) = ( +g ` G ) ) |
| 9 | 8 | oveqdr | |- ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` G ) y ) ) |
| 10 | eqidd | |- ( T. -> ( Scalar ` W ) = ( Scalar ` W ) ) |
|
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | 1 11 | tcphsca | |- ( Scalar ` W ) = ( Scalar ` G ) |
| 13 | 12 | a1i | |- ( T. -> ( Scalar ` W ) = ( Scalar ` G ) ) |
| 14 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 15 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 16 | 1 15 | tcphvsca | |- ( .s ` W ) = ( .s ` G ) |
| 17 | 16 | a1i | |- ( T. -> ( .s ` W ) = ( .s ` G ) ) |
| 18 | 17 | oveqdr | |- ( ( T. /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` G ) y ) ) |
| 19 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 20 | 1 19 | tcphip | |- ( .i ` W ) = ( .i ` G ) |
| 21 | 20 | a1i | |- ( T. -> ( .i ` W ) = ( .i ` G ) ) |
| 22 | 21 | oveqdr | |- ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .i ` W ) y ) = ( x ( .i ` G ) y ) ) |
| 23 | 2 5 9 10 13 14 18 22 | phlpropd | |- ( T. -> ( W e. PreHil <-> G e. PreHil ) ) |
| 24 | 23 | mptru | |- ( W e. PreHil <-> G e. PreHil ) |