This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgnrg.h | |- H = ( G |`s A ) |
|
| Assertion | subrgnrg | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgnrg.h | |- H = ( G |`s A ) |
|
| 2 | nrgngp | |- ( G e. NrmRing -> G e. NrmGrp ) |
|
| 3 | subrgsubg | |- ( A e. ( SubRing ` G ) -> A e. ( SubGrp ` G ) ) |
|
| 4 | 1 | subgngp | |- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |
| 5 | 2 3 4 | syl2an | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmGrp ) |
| 6 | 3 | adantl | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> A e. ( SubGrp ` G ) ) |
| 7 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 8 | eqid | |- ( norm ` H ) = ( norm ` H ) |
|
| 9 | 1 7 8 | subgnm | |- ( A e. ( SubGrp ` G ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
| 10 | 6 9 | syl | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
| 11 | eqid | |- ( AbsVal ` G ) = ( AbsVal ` G ) |
|
| 12 | 7 11 | nrgabv | |- ( G e. NrmRing -> ( norm ` G ) e. ( AbsVal ` G ) ) |
| 13 | eqid | |- ( AbsVal ` H ) = ( AbsVal ` H ) |
|
| 14 | 11 1 13 | abvres | |- ( ( ( norm ` G ) e. ( AbsVal ` G ) /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
| 15 | 12 14 | sylan | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
| 16 | 10 15 | eqeltrd | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) e. ( AbsVal ` H ) ) |
| 17 | 8 13 | isnrg | |- ( H e. NrmRing <-> ( H e. NrmGrp /\ ( norm ` H ) e. ( AbsVal ` H ) ) ) |
| 18 | 5 16 17 | sylanbrc | |- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmRing ) |