This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphcph : homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphcph.v | |- V = ( Base ` W ) |
||
| tcphcph.f | |- F = ( Scalar ` W ) |
||
| tcphcph.1 | |- ( ph -> W e. PreHil ) |
||
| tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
||
| tcphcph.h | |- ., = ( .i ` W ) |
||
| tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
||
| tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
||
| tcphcph.k | |- K = ( Base ` F ) |
||
| tcphcph.s | |- .x. = ( .s ` W ) |
||
| tcphcphlem2.3 | |- ( ph -> X e. K ) |
||
| tcphcphlem2.4 | |- ( ph -> Y e. V ) |
||
| Assertion | tcphcphlem2 | |- ( ph -> ( sqrt ` ( ( X .x. Y ) ., ( X .x. Y ) ) ) = ( ( abs ` X ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphcph.v | |- V = ( Base ` W ) |
|
| 3 | tcphcph.f | |- F = ( Scalar ` W ) |
|
| 4 | tcphcph.1 | |- ( ph -> W e. PreHil ) |
|
| 5 | tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
|
| 6 | tcphcph.h | |- ., = ( .i ` W ) |
|
| 7 | tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
|
| 8 | tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
|
| 9 | tcphcph.k | |- K = ( Base ` F ) |
|
| 10 | tcphcph.s | |- .x. = ( .s ` W ) |
|
| 11 | tcphcphlem2.3 | |- ( ph -> X e. K ) |
|
| 12 | tcphcphlem2.4 | |- ( ph -> Y e. V ) |
|
| 13 | 1 2 3 4 5 | phclm | |- ( ph -> W e. CMod ) |
| 14 | 3 9 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 15 | 13 14 | syl | |- ( ph -> K C_ CC ) |
| 16 | 15 11 | sseldd | |- ( ph -> X e. CC ) |
| 17 | 16 | cjmulrcld | |- ( ph -> ( X x. ( * ` X ) ) e. RR ) |
| 18 | 16 | cjmulge0d | |- ( ph -> 0 <_ ( X x. ( * ` X ) ) ) |
| 19 | 1 2 3 4 5 6 | tcphcphlem3 | |- ( ( ph /\ Y e. V ) -> ( Y ., Y ) e. RR ) |
| 20 | 12 19 | mpdan | |- ( ph -> ( Y ., Y ) e. RR ) |
| 21 | oveq12 | |- ( ( x = Y /\ x = Y ) -> ( x ., x ) = ( Y ., Y ) ) |
|
| 22 | 21 | anidms | |- ( x = Y -> ( x ., x ) = ( Y ., Y ) ) |
| 23 | 22 | breq2d | |- ( x = Y -> ( 0 <_ ( x ., x ) <-> 0 <_ ( Y ., Y ) ) ) |
| 24 | 8 | ralrimiva | |- ( ph -> A. x e. V 0 <_ ( x ., x ) ) |
| 25 | 23 24 12 | rspcdva | |- ( ph -> 0 <_ ( Y ., Y ) ) |
| 26 | 17 18 20 25 | sqrtmuld | |- ( ph -> ( sqrt ` ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) = ( ( sqrt ` ( X x. ( * ` X ) ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 27 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 28 | 4 27 | syl | |- ( ph -> W e. LMod ) |
| 29 | 2 3 10 9 | lmodvscl | |- ( ( W e. LMod /\ X e. K /\ Y e. V ) -> ( X .x. Y ) e. V ) |
| 30 | 28 11 12 29 | syl3anc | |- ( ph -> ( X .x. Y ) e. V ) |
| 31 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 32 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 33 | 3 6 2 9 10 31 32 | ipassr | |- ( ( W e. PreHil /\ ( ( X .x. Y ) e. V /\ Y e. V /\ X e. K ) ) -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) |
| 34 | 4 30 12 11 33 | syl13anc | |- ( ph -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) |
| 35 | 3 | clmmul | |- ( W e. CMod -> x. = ( .r ` F ) ) |
| 36 | 13 35 | syl | |- ( ph -> x. = ( .r ` F ) ) |
| 37 | 36 | oveqd | |- ( ph -> ( X x. ( Y ., Y ) ) = ( X ( .r ` F ) ( Y ., Y ) ) ) |
| 38 | 3 6 2 9 10 31 | ipass | |- ( ( W e. PreHil /\ ( X e. K /\ Y e. V /\ Y e. V ) ) -> ( ( X .x. Y ) ., Y ) = ( X ( .r ` F ) ( Y ., Y ) ) ) |
| 39 | 4 11 12 12 38 | syl13anc | |- ( ph -> ( ( X .x. Y ) ., Y ) = ( X ( .r ` F ) ( Y ., Y ) ) ) |
| 40 | 37 39 | eqtr4d | |- ( ph -> ( X x. ( Y ., Y ) ) = ( ( X .x. Y ) ., Y ) ) |
| 41 | 3 | clmcj | |- ( W e. CMod -> * = ( *r ` F ) ) |
| 42 | 13 41 | syl | |- ( ph -> * = ( *r ` F ) ) |
| 43 | 42 | fveq1d | |- ( ph -> ( * ` X ) = ( ( *r ` F ) ` X ) ) |
| 44 | 36 40 43 | oveq123d | |- ( ph -> ( ( X x. ( Y ., Y ) ) x. ( * ` X ) ) = ( ( ( X .x. Y ) ., Y ) ( .r ` F ) ( ( *r ` F ) ` X ) ) ) |
| 45 | 20 | recnd | |- ( ph -> ( Y ., Y ) e. CC ) |
| 46 | 16 | cjcld | |- ( ph -> ( * ` X ) e. CC ) |
| 47 | 16 45 46 | mul32d | |- ( ph -> ( ( X x. ( Y ., Y ) ) x. ( * ` X ) ) = ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) |
| 48 | 34 44 47 | 3eqtr2d | |- ( ph -> ( ( X .x. Y ) ., ( X .x. Y ) ) = ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) |
| 49 | 48 | fveq2d | |- ( ph -> ( sqrt ` ( ( X .x. Y ) ., ( X .x. Y ) ) ) = ( sqrt ` ( ( X x. ( * ` X ) ) x. ( Y ., Y ) ) ) ) |
| 50 | absval | |- ( X e. CC -> ( abs ` X ) = ( sqrt ` ( X x. ( * ` X ) ) ) ) |
|
| 51 | 16 50 | syl | |- ( ph -> ( abs ` X ) = ( sqrt ` ( X x. ( * ` X ) ) ) ) |
| 52 | 51 | oveq1d | |- ( ph -> ( ( abs ` X ) x. ( sqrt ` ( Y ., Y ) ) ) = ( ( sqrt ` ( X x. ( * ` X ) ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 53 | 26 49 52 | 3eqtr4d | |- ( ph -> ( sqrt ` ( ( X .x. Y ) ., ( X .x. Y ) ) ) = ( ( abs ` X ) x. ( sqrt ` ( Y ., Y ) ) ) ) |