This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldnm | |- abs = ( norm ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 3 | 2 | cnmetdval | |- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 4 | 1 3 | mpan2 | |- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 5 | subid1 | |- ( x e. CC -> ( x - 0 ) = x ) |
|
| 6 | 5 | fveq2d | |- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 7 | 4 6 | eqtrd | |- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
| 8 | 7 | mpteq2ia | |- ( x e. CC |-> ( x ( abs o. - ) 0 ) ) = ( x e. CC |-> ( abs ` x ) ) |
| 9 | eqid | |- ( norm ` CCfld ) = ( norm ` CCfld ) |
|
| 10 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 11 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 12 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 13 | 9 10 11 12 | nmfval | |- ( norm ` CCfld ) = ( x e. CC |-> ( x ( abs o. - ) 0 ) ) |
| 14 | absf | |- abs : CC --> RR |
|
| 15 | 14 | a1i | |- ( T. -> abs : CC --> RR ) |
| 16 | 15 | feqmptd | |- ( T. -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
| 17 | 16 | mptru | |- abs = ( x e. CC |-> ( abs ` x ) ) |
| 18 | 8 13 17 | 3eqtr4ri | |- abs = ( norm ` CCfld ) |