This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnlm.v | |- V = ( Base ` W ) |
|
| isnlm.n | |- N = ( norm ` W ) |
||
| isnlm.s | |- .x. = ( .s ` W ) |
||
| isnlm.f | |- F = ( Scalar ` W ) |
||
| isnlm.k | |- K = ( Base ` F ) |
||
| isnlm.a | |- A = ( norm ` F ) |
||
| Assertion | isnlm | |- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlm.v | |- V = ( Base ` W ) |
|
| 2 | isnlm.n | |- N = ( norm ` W ) |
|
| 3 | isnlm.s | |- .x. = ( .s ` W ) |
|
| 4 | isnlm.f | |- F = ( Scalar ` W ) |
|
| 5 | isnlm.k | |- K = ( Base ` F ) |
|
| 6 | isnlm.a | |- A = ( norm ` F ) |
|
| 7 | anass | |- ( ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
|
| 8 | df-3an | |- ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) |
|
| 9 | elin | |- ( W e. ( NrmGrp i^i LMod ) <-> ( W e. NrmGrp /\ W e. LMod ) ) |
|
| 10 | 9 | anbi1i | |- ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) |
| 11 | 8 10 | bitr4i | |- ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) ) |
| 12 | 11 | anbi1i | |- ( ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 13 | fvexd | |- ( w = W -> ( Scalar ` w ) e. _V ) |
|
| 14 | id | |- ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) |
|
| 15 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 16 | 15 4 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 17 | 14 16 | sylan9eqr | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) |
| 18 | 17 | eleq1d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( f e. NrmRing <-> F e. NrmRing ) ) |
| 19 | 17 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) |
| 20 | 19 5 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) |
| 21 | simpl | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> w = W ) |
|
| 22 | 21 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = ( Base ` W ) ) |
| 23 | 22 1 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = V ) |
| 24 | 21 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = ( norm ` W ) ) |
| 25 | 24 2 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = N ) |
| 26 | 21 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = ( .s ` W ) ) |
| 27 | 26 3 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = .x. ) |
| 28 | 27 | oveqd | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( x ( .s ` w ) y ) = ( x .x. y ) ) |
| 29 | 25 28 | fveq12d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( N ` ( x .x. y ) ) ) |
| 30 | 17 | fveq2d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = ( norm ` F ) ) |
| 31 | 30 6 | eqtr4di | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = A ) |
| 32 | 31 | fveq1d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` f ) ` x ) = ( A ` x ) ) |
| 33 | 25 | fveq1d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` y ) = ( N ` y ) ) |
| 34 | 32 33 | oveq12d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) |
| 35 | 29 34 | eqeq12d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 36 | 23 35 | raleqbidv | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 37 | 20 36 | raleqbidv | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 38 | 18 37 | anbi12d | |- ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 39 | 13 38 | sbcied | |- ( w = W -> ( [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 40 | df-nlm | |- NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } |
|
| 41 | 39 40 | elrab2 | |- ( W e. NrmMod <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) |
| 42 | 7 12 41 | 3bitr4ri | |- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |