This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphnmval.n | |- N = ( norm ` G ) |
||
| tcphnmval.v | |- V = ( Base ` W ) |
||
| tcphnmval.h | |- ., = ( .i ` W ) |
||
| Assertion | tcphnmval | |- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphnmval.n | |- N = ( norm ` G ) |
|
| 3 | tcphnmval.v | |- V = ( Base ` W ) |
|
| 4 | tcphnmval.h | |- ., = ( .i ` W ) |
|
| 5 | 1 2 3 4 | tchnmfval | |- ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 6 | 5 | fveq1d | |- ( W e. Grp -> ( N ` X ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) ) |
| 7 | oveq12 | |- ( ( x = X /\ x = X ) -> ( x ., x ) = ( X ., X ) ) |
|
| 8 | 7 | anidms | |- ( x = X -> ( x ., x ) = ( X ., X ) ) |
| 9 | 8 | fveq2d | |- ( x = X -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( X ., X ) ) ) |
| 10 | eqid | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
|
| 11 | fvex | |- ( sqrt ` ( X ., X ) ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( X e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) = ( sqrt ` ( X ., X ) ) ) |
| 13 | 6 12 | sylan9eq | |- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |