This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cphsubrg . (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsubrglem.k | |- K = ( Base ` F ) |
|
| cphsubrglem.1 | |- ( ph -> F = ( CCfld |`s A ) ) |
||
| cphsubrglem.2 | |- ( ph -> F e. DivRing ) |
||
| Assertion | cphsubrglem | |- ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | |- K = ( Base ` F ) |
|
| 2 | cphsubrglem.1 | |- ( ph -> F = ( CCfld |`s A ) ) |
|
| 3 | cphsubrglem.2 | |- ( ph -> F e. DivRing ) |
|
| 4 | 2 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s A ) ) ) |
| 5 | drngring | |- ( F e. DivRing -> F e. Ring ) |
|
| 6 | 3 5 | syl | |- ( ph -> F e. Ring ) |
| 7 | 2 6 | eqeltrrd | |- ( ph -> ( CCfld |`s A ) e. Ring ) |
| 8 | eqid | |- ( Base ` ( CCfld |`s A ) ) = ( Base ` ( CCfld |`s A ) ) |
|
| 9 | eqid | |- ( 0g ` ( CCfld |`s A ) ) = ( 0g ` ( CCfld |`s A ) ) |
|
| 10 | 8 9 | ring0cl | |- ( ( CCfld |`s A ) e. Ring -> ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) ) |
| 11 | reldmress | |- Rel dom |`s |
|
| 12 | eqid | |- ( CCfld |`s A ) = ( CCfld |`s A ) |
|
| 13 | 11 12 8 | elbasov | |- ( ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) -> ( CCfld e. _V /\ A e. _V ) ) |
| 14 | 7 10 13 | 3syl | |- ( ph -> ( CCfld e. _V /\ A e. _V ) ) |
| 15 | 14 | simprd | |- ( ph -> A e. _V ) |
| 16 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 17 | 12 16 | ressbas | |- ( A e. _V -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) |
| 18 | 15 17 | syl | |- ( ph -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) |
| 19 | 4 18 | eqtr4d | |- ( ph -> ( Base ` F ) = ( A i^i CC ) ) |
| 20 | 1 19 | eqtrid | |- ( ph -> K = ( A i^i CC ) ) |
| 21 | 20 | oveq2d | |- ( ph -> ( CCfld |`s K ) = ( CCfld |`s ( A i^i CC ) ) ) |
| 22 | 16 | ressinbas | |- ( A e. _V -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) |
| 23 | 15 22 | syl | |- ( ph -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) |
| 24 | 21 23 | eqtr4d | |- ( ph -> ( CCfld |`s K ) = ( CCfld |`s A ) ) |
| 25 | 2 24 | eqtr4d | |- ( ph -> F = ( CCfld |`s K ) ) |
| 26 | 25 6 | eqeltrrd | |- ( ph -> ( CCfld |`s K ) e. Ring ) |
| 27 | cnring | |- CCfld e. Ring |
|
| 28 | 26 27 | jctil | |- ( ph -> ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) ) |
| 29 | 12 16 | ressbasss | |- ( Base ` ( CCfld |`s A ) ) C_ CC |
| 30 | 4 29 | eqsstrdi | |- ( ph -> ( Base ` F ) C_ CC ) |
| 31 | 1 30 | eqsstrid | |- ( ph -> K C_ CC ) |
| 32 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 33 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 34 | 32 33 | drngunz | |- ( F e. DivRing -> ( 1r ` F ) =/= ( 0g ` F ) ) |
| 35 | 3 34 | syl | |- ( ph -> ( 1r ` F ) =/= ( 0g ` F ) ) |
| 36 | 25 | fveq2d | |- ( ph -> ( 0g ` F ) = ( 0g ` ( CCfld |`s K ) ) ) |
| 37 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 38 | 27 37 | mp1i | |- ( ph -> CCfld e. Grp ) |
| 39 | ringgrp | |- ( ( CCfld |`s K ) e. Ring -> ( CCfld |`s K ) e. Grp ) |
|
| 40 | 26 39 | syl | |- ( ph -> ( CCfld |`s K ) e. Grp ) |
| 41 | 16 | issubg | |- ( K e. ( SubGrp ` CCfld ) <-> ( CCfld e. Grp /\ K C_ CC /\ ( CCfld |`s K ) e. Grp ) ) |
| 42 | 38 31 40 41 | syl3anbrc | |- ( ph -> K e. ( SubGrp ` CCfld ) ) |
| 43 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 44 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 45 | 43 44 | subg0 | |- ( K e. ( SubGrp ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
| 46 | 42 45 | syl | |- ( ph -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
| 47 | 36 46 | eqtr4d | |- ( ph -> ( 0g ` F ) = 0 ) |
| 48 | 35 47 | neeqtrd | |- ( ph -> ( 1r ` F ) =/= 0 ) |
| 49 | 48 | neneqd | |- ( ph -> -. ( 1r ` F ) = 0 ) |
| 50 | 1 33 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 51 | 6 50 | syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 52 | 31 51 | sseldd | |- ( ph -> ( 1r ` F ) e. CC ) |
| 53 | 52 | sqvald | |- ( ph -> ( ( 1r ` F ) ^ 2 ) = ( ( 1r ` F ) x. ( 1r ` F ) ) ) |
| 54 | 25 | fveq2d | |- ( ph -> ( 1r ` F ) = ( 1r ` ( CCfld |`s K ) ) ) |
| 55 | 54 | oveq1d | |- ( ph -> ( ( 1r ` F ) x. ( 1r ` F ) ) = ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) ) |
| 56 | 25 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) |
| 57 | 1 56 | eqtrid | |- ( ph -> K = ( Base ` ( CCfld |`s K ) ) ) |
| 58 | 51 57 | eleqtrd | |- ( ph -> ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) |
| 59 | eqid | |- ( Base ` ( CCfld |`s K ) ) = ( Base ` ( CCfld |`s K ) ) |
|
| 60 | 1 | fvexi | |- K e. _V |
| 61 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 62 | 43 61 | ressmulr | |- ( K e. _V -> x. = ( .r ` ( CCfld |`s K ) ) ) |
| 63 | 60 62 | ax-mp | |- x. = ( .r ` ( CCfld |`s K ) ) |
| 64 | eqid | |- ( 1r ` ( CCfld |`s K ) ) = ( 1r ` ( CCfld |`s K ) ) |
|
| 65 | 59 63 64 | ringlidm | |- ( ( ( CCfld |`s K ) e. Ring /\ ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) |
| 66 | 26 58 65 | syl2anc | |- ( ph -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) |
| 67 | 53 55 66 | 3eqtrd | |- ( ph -> ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) ) |
| 68 | sq01 | |- ( ( 1r ` F ) e. CC -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) |
|
| 69 | 52 68 | syl | |- ( ph -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) |
| 70 | 67 69 | mpbid | |- ( ph -> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) |
| 71 | 70 | ord | |- ( ph -> ( -. ( 1r ` F ) = 0 -> ( 1r ` F ) = 1 ) ) |
| 72 | 49 71 | mpd | |- ( ph -> ( 1r ` F ) = 1 ) |
| 73 | 72 51 | eqeltrrd | |- ( ph -> 1 e. K ) |
| 74 | 31 73 | jca | |- ( ph -> ( K C_ CC /\ 1 e. K ) ) |
| 75 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 76 | 16 75 | issubrg | |- ( K e. ( SubRing ` CCfld ) <-> ( ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) /\ ( K C_ CC /\ 1 e. K ) ) ) |
| 77 | 28 74 76 | sylanbrc | |- ( ph -> K e. ( SubRing ` CCfld ) ) |
| 78 | 25 20 77 | 3jca | |- ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) |