This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp.t | |- T = ( G toNrmGrp N ) |
|
| tngngp.x | |- X = ( Base ` G ) |
||
| tngngp.m | |- .- = ( -g ` G ) |
||
| tngngp.z | |- .0. = ( 0g ` G ) |
||
| tngngpd.1 | |- ( ph -> G e. Grp ) |
||
| tngngpd.2 | |- ( ph -> N : X --> RR ) |
||
| tngngpd.3 | |- ( ( ph /\ x e. X ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) |
||
| tngngpd.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
||
| Assertion | tngngpd | |- ( ph -> T e. NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngngp.x | |- X = ( Base ` G ) |
|
| 3 | tngngp.m | |- .- = ( -g ` G ) |
|
| 4 | tngngp.z | |- .0. = ( 0g ` G ) |
|
| 5 | tngngpd.1 | |- ( ph -> G e. Grp ) |
|
| 6 | tngngpd.2 | |- ( ph -> N : X --> RR ) |
|
| 7 | tngngpd.3 | |- ( ( ph /\ x e. X ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) |
|
| 8 | tngngpd.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
|
| 9 | 2 | fvexi | |- X e. _V |
| 10 | reex | |- RR e. _V |
|
| 11 | fex2 | |- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
|
| 12 | 9 10 11 | mp3an23 | |- ( N : X --> RR -> N e. _V ) |
| 13 | 1 3 | tngds | |- ( N e. _V -> ( N o. .- ) = ( dist ` T ) ) |
| 14 | 6 12 13 | 3syl | |- ( ph -> ( N o. .- ) = ( dist ` T ) ) |
| 15 | 2 3 4 5 6 7 8 | nrmmetd | |- ( ph -> ( N o. .- ) e. ( Met ` X ) ) |
| 16 | 14 15 | eqeltrrd | |- ( ph -> ( dist ` T ) e. ( Met ` X ) ) |
| 17 | eqid | |- ( dist ` T ) = ( dist ` T ) |
|
| 18 | 1 2 17 | tngngp2 | |- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
| 19 | 6 18 | syl | |- ( ph -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
| 20 | 5 16 19 | mpbir2and | |- ( ph -> T e. NrmGrp ) |