This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1f0rn | |- ( F e. dom S.1 -> 0 e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre | |- +oo e/ RR |
|
| 2 | 1 | neli | |- -. +oo e. RR |
| 3 | rembl | |- RR e. dom vol |
|
| 4 | mblvol | |- ( RR e. dom vol -> ( vol ` RR ) = ( vol* ` RR ) ) |
|
| 5 | 3 4 | ax-mp | |- ( vol ` RR ) = ( vol* ` RR ) |
| 6 | ovolre | |- ( vol* ` RR ) = +oo |
|
| 7 | 5 6 | eqtri | |- ( vol ` RR ) = +oo |
| 8 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 9 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 10 | 9 | fdmd | |- ( F e. dom S.1 -> dom F = RR ) |
| 11 | 10 | adantr | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> dom F = RR ) |
| 12 | 8 11 | eqtrid | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> ( `' F " ran F ) = RR ) |
| 13 | 12 | fveq2d | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> ( vol ` ( `' F " ran F ) ) = ( vol ` RR ) ) |
| 14 | i1fima2 | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> ( vol ` ( `' F " ran F ) ) e. RR ) |
|
| 15 | 13 14 | eqeltrrd | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> ( vol ` RR ) e. RR ) |
| 16 | 7 15 | eqeltrrid | |- ( ( F e. dom S.1 /\ -. 0 e. ran F ) -> +oo e. RR ) |
| 17 | 16 | ex | |- ( F e. dom S.1 -> ( -. 0 e. ran F -> +oo e. RR ) ) |
| 18 | 2 17 | mt3i | |- ( F e. dom S.1 -> 0 e. ran F ) |