This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a finite sum of converging sequences. Note that F ( k ) is a collection of functions with implicit parameter k , each of which converges to B ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-Jul-2014) (Proof shortened by Mario Carneiro, 22-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climfsum.1 | |- Z = ( ZZ>= ` M ) |
|
| climfsum.2 | |- ( ph -> M e. ZZ ) |
||
| climfsum.3 | |- ( ph -> A e. Fin ) |
||
| climfsum.5 | |- ( ( ph /\ k e. A ) -> F ~~> B ) |
||
| climfsum.6 | |- ( ph -> H e. W ) |
||
| climfsum.7 | |- ( ( ph /\ ( k e. A /\ n e. Z ) ) -> ( F ` n ) e. CC ) |
||
| climfsum.8 | |- ( ( ph /\ n e. Z ) -> ( H ` n ) = sum_ k e. A ( F ` n ) ) |
||
| Assertion | climfsum | |- ( ph -> H ~~> sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climfsum.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climfsum.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climfsum.3 | |- ( ph -> A e. Fin ) |
|
| 4 | climfsum.5 | |- ( ( ph /\ k e. A ) -> F ~~> B ) |
|
| 5 | climfsum.6 | |- ( ph -> H e. W ) |
|
| 6 | climfsum.7 | |- ( ( ph /\ ( k e. A /\ n e. Z ) ) -> ( F ` n ) e. CC ) |
|
| 7 | climfsum.8 | |- ( ( ph /\ n e. Z ) -> ( H ` n ) = sum_ k e. A ( F ` n ) ) |
|
| 8 | 7 | mpteq2dva | |- ( ph -> ( n e. Z |-> ( H ` n ) ) = ( n e. Z |-> sum_ k e. A ( F ` n ) ) ) |
| 9 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 10 | 1 9 | eqsstri | |- Z C_ ZZ |
| 11 | zssre | |- ZZ C_ RR |
|
| 12 | 10 11 | sstri | |- Z C_ RR |
| 13 | 12 | a1i | |- ( ph -> Z C_ RR ) |
| 14 | fvexd | |- ( ( ph /\ ( n e. Z /\ k e. A ) ) -> ( F ` n ) e. _V ) |
|
| 15 | 2 | adantr | |- ( ( ph /\ k e. A ) -> M e. ZZ ) |
| 16 | climrel | |- Rel ~~> |
|
| 17 | 16 | brrelex1i | |- ( F ~~> B -> F e. _V ) |
| 18 | 4 17 | syl | |- ( ( ph /\ k e. A ) -> F e. _V ) |
| 19 | eqid | |- ( n e. Z |-> ( F ` n ) ) = ( n e. Z |-> ( F ` n ) ) |
|
| 20 | 1 19 | climmpt | |- ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
| 21 | 15 18 20 | syl2anc | |- ( ( ph /\ k e. A ) -> ( F ~~> B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
| 22 | 4 21 | mpbid | |- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) ~~> B ) |
| 23 | 6 | anassrs | |- ( ( ( ph /\ k e. A ) /\ n e. Z ) -> ( F ` n ) e. CC ) |
| 24 | 23 | fmpttd | |- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) : Z --> CC ) |
| 25 | 1 15 24 | rlimclim | |- ( ( ph /\ k e. A ) -> ( ( n e. Z |-> ( F ` n ) ) ~~>r B <-> ( n e. Z |-> ( F ` n ) ) ~~> B ) ) |
| 26 | 22 25 | mpbird | |- ( ( ph /\ k e. A ) -> ( n e. Z |-> ( F ` n ) ) ~~>r B ) |
| 27 | 13 3 14 26 | fsumrlim | |- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~>r sum_ k e. A B ) |
| 28 | 3 | adantr | |- ( ( ph /\ n e. Z ) -> A e. Fin ) |
| 29 | 6 | anass1rs | |- ( ( ( ph /\ n e. Z ) /\ k e. A ) -> ( F ` n ) e. CC ) |
| 30 | 28 29 | fsumcl | |- ( ( ph /\ n e. Z ) -> sum_ k e. A ( F ` n ) e. CC ) |
| 31 | 30 | fmpttd | |- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) : Z --> CC ) |
| 32 | 1 2 31 | rlimclim | |- ( ph -> ( ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~>r sum_ k e. A B <-> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~> sum_ k e. A B ) ) |
| 33 | 27 32 | mpbid | |- ( ph -> ( n e. Z |-> sum_ k e. A ( F ` n ) ) ~~> sum_ k e. A B ) |
| 34 | 8 33 | eqbrtrd | |- ( ph -> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) |
| 35 | eqid | |- ( n e. Z |-> ( H ` n ) ) = ( n e. Z |-> ( H ` n ) ) |
|
| 36 | 1 35 | climmpt | |- ( ( M e. ZZ /\ H e. W ) -> ( H ~~> sum_ k e. A B <-> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) ) |
| 37 | 2 5 36 | syl2anc | |- ( ph -> ( H ~~> sum_ k e. A B <-> ( n e. Z |-> ( H ` n ) ) ~~> sum_ k e. A B ) ) |
| 38 | 34 37 | mpbird | |- ( ph -> H ~~> sum_ k e. A B ) |