This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq | |- ( f = F -> ran f = ran F ) |
|
| 2 | 1 | difeq1d | |- ( f = F -> ( ran f \ { 0 } ) = ( ran F \ { 0 } ) ) |
| 3 | cnveq | |- ( f = F -> `' f = `' F ) |
|
| 4 | 3 | imaeq1d | |- ( f = F -> ( `' f " { x } ) = ( `' F " { x } ) ) |
| 5 | 4 | fveq2d | |- ( f = F -> ( vol ` ( `' f " { x } ) ) = ( vol ` ( `' F " { x } ) ) ) |
| 6 | 5 | oveq2d | |- ( f = F -> ( x x. ( vol ` ( `' f " { x } ) ) ) = ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 7 | 6 | adantr | |- ( ( f = F /\ x e. ( ran f \ { 0 } ) ) -> ( x x. ( vol ` ( `' f " { x } ) ) ) = ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 8 | 2 7 | sumeq12dv | |- ( f = F -> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 9 | df-itg1 | |- S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |
|
| 10 | sumex | |- sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( F e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 12 | sumex | |- sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) e. _V |
|
| 13 | 12 9 | dmmpti | |- dom S.1 = { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |
| 14 | 11 13 | eleq2s | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |