This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
||
| Assertion | mbfi1fseqlem1 | |- ( ph -> J : ( NN X. RR ) --> ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 4 | simpr | |- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
|
| 5 | ffvelcdm | |- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
|
| 6 | 2 4 5 | syl2an | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 7 | elrege0 | |- ( ( F ` y ) e. ( 0 [,) +oo ) <-> ( ( F ` y ) e. RR /\ 0 <_ ( F ` y ) ) ) |
|
| 8 | 6 7 | sylib | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) e. RR /\ 0 <_ ( F ` y ) ) ) |
| 9 | 8 | simpld | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
| 10 | 2nn | |- 2 e. NN |
|
| 11 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 12 | nnexpcl | |- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
|
| 13 | 10 11 12 | sylancr | |- ( m e. NN -> ( 2 ^ m ) e. NN ) |
| 14 | 13 | ad2antrl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
| 15 | 14 | nnred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
| 16 | 9 15 | remulcld | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
| 17 | reflcl | |- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 19 | 18 14 | nndivred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 20 | 14 | nnnn0d | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN0 ) |
| 21 | 20 | nn0ge0d | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> 0 <_ ( 2 ^ m ) ) |
| 22 | mulge0 | |- ( ( ( ( F ` y ) e. RR /\ 0 <_ ( F ` y ) ) /\ ( ( 2 ^ m ) e. RR /\ 0 <_ ( 2 ^ m ) ) ) -> 0 <_ ( ( F ` y ) x. ( 2 ^ m ) ) ) |
|
| 23 | 8 15 21 22 | syl12anc | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> 0 <_ ( ( F ` y ) x. ( 2 ^ m ) ) ) |
| 24 | flge0nn0 | |- ( ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR /\ 0 <_ ( ( F ` y ) x. ( 2 ^ m ) ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. NN0 ) |
|
| 25 | 16 23 24 | syl2anc | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. NN0 ) |
| 26 | 25 | nn0ge0d | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> 0 <_ ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) ) |
| 27 | 14 | nngt0d | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> 0 < ( 2 ^ m ) ) |
| 28 | divge0 | |- ( ( ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR /\ 0 <_ ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) ) /\ ( ( 2 ^ m ) e. RR /\ 0 < ( 2 ^ m ) ) ) -> 0 <_ ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 29 | 18 26 15 27 28 | syl22anc | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> 0 <_ ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
| 30 | elrege0 | |- ( ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. ( 0 [,) +oo ) <-> ( ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR /\ 0 <_ ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) ) |
|
| 31 | 19 29 30 | sylanbrc | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. ( 0 [,) +oo ) ) |
| 32 | 31 | ralrimivva | |- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. ( 0 [,) +oo ) ) |
| 33 | 3 | fmpo | |- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. ( 0 [,) +oo ) <-> J : ( NN X. RR ) --> ( 0 [,) +oo ) ) |
| 34 | 32 33 | sylib | |- ( ph -> J : ( NN X. RR ) --> ( 0 [,) +oo ) ) |