This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted existential quantifier using implicit substitution. Version of cbvrexv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 2-Jun-1998) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvralvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cbvrexvw | |- ( E. x e. A ph <-> E. y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 3 | 2 1 | anbi12d | |- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) ) |
| 4 | 3 | cbvexvw | |- ( E. x ( x e. A /\ ph ) <-> E. y ( y e. A /\ ps ) ) |
| 5 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 6 | df-rex | |- ( E. y e. A ps <-> E. y ( y e. A /\ ps ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( E. x e. A ph <-> E. y e. A ps ) |