This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzin2 | |- ( ( A e. ran ZZ>= /\ B e. ran ZZ>= ) -> ( A i^i B ) e. ran ZZ>= ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 2 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 3 | 1 2 | ax-mp | |- ZZ>= Fn ZZ |
| 4 | fvelrnb | |- ( ZZ>= Fn ZZ -> ( A e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = A ) ) |
|
| 5 | 3 4 | ax-mp | |- ( A e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = A ) |
| 6 | fvelrnb | |- ( ZZ>= Fn ZZ -> ( B e. ran ZZ>= <-> E. y e. ZZ ( ZZ>= ` y ) = B ) ) |
|
| 7 | 3 6 | ax-mp | |- ( B e. ran ZZ>= <-> E. y e. ZZ ( ZZ>= ` y ) = B ) |
| 8 | ineq1 | |- ( ( ZZ>= ` x ) = A -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) = ( A i^i ( ZZ>= ` y ) ) ) |
|
| 9 | 8 | eleq1d | |- ( ( ZZ>= ` x ) = A -> ( ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) e. ran ZZ>= <-> ( A i^i ( ZZ>= ` y ) ) e. ran ZZ>= ) ) |
| 10 | ineq2 | |- ( ( ZZ>= ` y ) = B -> ( A i^i ( ZZ>= ` y ) ) = ( A i^i B ) ) |
|
| 11 | 10 | eleq1d | |- ( ( ZZ>= ` y ) = B -> ( ( A i^i ( ZZ>= ` y ) ) e. ran ZZ>= <-> ( A i^i B ) e. ran ZZ>= ) ) |
| 12 | uzin | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) = ( ZZ>= ` if ( x <_ y , y , x ) ) ) |
|
| 13 | ifcl | |- ( ( y e. ZZ /\ x e. ZZ ) -> if ( x <_ y , y , x ) e. ZZ ) |
|
| 14 | 13 | ancoms | |- ( ( x e. ZZ /\ y e. ZZ ) -> if ( x <_ y , y , x ) e. ZZ ) |
| 15 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ if ( x <_ y , y , x ) e. ZZ ) -> ( ZZ>= ` if ( x <_ y , y , x ) ) e. ran ZZ>= ) |
|
| 16 | 3 14 15 | sylancr | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ZZ>= ` if ( x <_ y , y , x ) ) e. ran ZZ>= ) |
| 17 | 12 16 | eqeltrd | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) e. ran ZZ>= ) |
| 18 | 5 7 9 11 17 | 2gencl | |- ( ( A e. ran ZZ>= /\ B e. ran ZZ>= ) -> ( A i^i B ) e. ran ZZ>= ) |