This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a class includes the intersection of the class. Exercise 4 of TakeutiZaring p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intss1 | |- ( A e. B -> |^| B C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | elint | |- ( x e. |^| B <-> A. y ( y e. B -> x e. y ) ) |
| 3 | eleq1 | |- ( y = A -> ( y e. B <-> A e. B ) ) |
|
| 4 | eleq2 | |- ( y = A -> ( x e. y <-> x e. A ) ) |
|
| 5 | 3 4 | imbi12d | |- ( y = A -> ( ( y e. B -> x e. y ) <-> ( A e. B -> x e. A ) ) ) |
| 6 | 5 | spcgv | |- ( A e. B -> ( A. y ( y e. B -> x e. y ) -> ( A e. B -> x e. A ) ) ) |
| 7 | 6 | pm2.43a | |- ( A e. B -> ( A. y ( y e. B -> x e. y ) -> x e. A ) ) |
| 8 | 2 7 | biimtrid | |- ( A e. B -> ( x e. |^| B -> x e. A ) ) |
| 9 | 8 | ssrdv | |- ( A e. B -> |^| B C_ A ) |