This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of intersection. Theorem 2.8(vii) of Monk1 p. 26. (Contributed by NM, 15-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssin | |- ( ( A C_ B /\ A C_ C ) <-> A C_ ( B i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( B i^i C ) <-> ( x e. B /\ x e. C ) ) |
|
| 2 | 1 | imbi2i | |- ( ( x e. A -> x e. ( B i^i C ) ) <-> ( x e. A -> ( x e. B /\ x e. C ) ) ) |
| 3 | 2 | albii | |- ( A. x ( x e. A -> x e. ( B i^i C ) ) <-> A. x ( x e. A -> ( x e. B /\ x e. C ) ) ) |
| 4 | jcab | |- ( ( x e. A -> ( x e. B /\ x e. C ) ) <-> ( ( x e. A -> x e. B ) /\ ( x e. A -> x e. C ) ) ) |
|
| 5 | 4 | albii | |- ( A. x ( x e. A -> ( x e. B /\ x e. C ) ) <-> A. x ( ( x e. A -> x e. B ) /\ ( x e. A -> x e. C ) ) ) |
| 6 | 19.26 | |- ( A. x ( ( x e. A -> x e. B ) /\ ( x e. A -> x e. C ) ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. A -> x e. C ) ) ) |
|
| 7 | 3 5 6 | 3bitrri | |- ( ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. A -> x e. C ) ) <-> A. x ( x e. A -> x e. ( B i^i C ) ) ) |
| 8 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 9 | df-ss | |- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
|
| 10 | 8 9 | anbi12i | |- ( ( A C_ B /\ A C_ C ) <-> ( A. x ( x e. A -> x e. B ) /\ A. x ( x e. A -> x e. C ) ) ) |
| 11 | df-ss | |- ( A C_ ( B i^i C ) <-> A. x ( x e. A -> x e. ( B i^i C ) ) ) |
|
| 12 | 7 10 11 | 3bitr4i | |- ( ( A C_ B /\ A C_ C ) <-> A C_ ( B i^i C ) ) |