This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsndisj | |- ( ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | simp1 | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> J e. Top ) |
|
| 3 | simp2 | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> S C_ X ) |
|
| 4 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 5 | 4 | sseld | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. X ) ) |
| 6 | 5 | 3impia | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. X ) |
| 7 | simp3 | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. ( ( cls ` J ) ` S ) ) |
|
| 8 | 1 | elcls | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 9 | 8 | biimpa | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 10 | 2 3 6 7 9 | syl31anc | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 11 | eleq2 | |- ( x = U -> ( P e. x <-> P e. U ) ) |
|
| 12 | ineq1 | |- ( x = U -> ( x i^i S ) = ( U i^i S ) ) |
|
| 13 | 12 | neeq1d | |- ( x = U -> ( ( x i^i S ) =/= (/) <-> ( U i^i S ) =/= (/) ) ) |
| 14 | 11 13 | imbi12d | |- ( x = U -> ( ( P e. x -> ( x i^i S ) =/= (/) ) <-> ( P e. U -> ( U i^i S ) =/= (/) ) ) ) |
| 15 | 14 | rspccv | |- ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( U e. J -> ( P e. U -> ( U i^i S ) =/= (/) ) ) ) |
| 16 | 15 | imp32 | |- ( ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) ) |
| 17 | 10 16 | sylan | |- ( ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) ) |